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1 Introduction

This talk is devoted to D-dimensional gravitational model with the so-called Gauss-Bonnet term. It
is governed by the action

S =

∫
M

dDz
√
|g|{α1(R[g]− 2Λ) + α2L2[g]}, (1.1)

where g = gMNdz
M ⊗dzN is the metric defined on the manifold M , dimM = D, |g| = | det(gMN)| and

L2 = RMNPQR
MNPQ − 4RMNR

MN +R2 (1.2)

is the quadratic “Gauss-Bonnet term” and Λ is cosmological term. Here α1 and α2 are non-zero
constants. The appearance of the Gauss-Bonnet term was motivated by string theory (Zwiebach,Gross,
Witten, Fradkin, Tseytlin, ...).

At present, the so-called Einstein-Gauss-Bonnet (EGB) gravitational model which is governed by the
action (1.1) and its modifications are intensively used in cosmology, e.g. for explanation of accelerating
expansion of the Universe following from supernovae (type Ia) observational data. Here we consider the
cosmological solutions with diagonal metrics governed by n scale factors depending upon one variable,
where n > 3; D = n + 1. We study the stability of solutions with exponential dependence of scale
factors with respect to the synchronous time variable t

ai(t) ∼ exp (vit), (1.3)

i = 1, . . . , n. In our analysis we restrict ourselves by a class of perturbations which depend on t and
do not disturb the diagonal form of the metric.

For possible physical applications solutions describing an exponential isotropic expansion of 3-
dimensional flat factor-space, i.e. with

v1 = v2 = v3 = H > 0, (1.4)
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and small enough variation of the effective gravitational constant G are of interest. We remind that
G (for 4d metric in Jordan frame is proportional to the inverse volume scale factor of the internal
space. Due to experimental data, the variation of G is allowed at the level of 10−13 per year and less.
The most stringent limitation on G-dot (coming from the set of ephemerides) was obtained in ref. [1]
(Pitjeva, 2013)

Ġ/G = (0.16± 0.6) · 10−13 year−1 (1.5)

allowed at 95% confidence (2-σ).
In multidimensional cosmology

G = GJ
eff(t) ∼ (

n∏
i=4

ai(t))
−1

is four-dimensional effective gravitational constant which appear in (multidimensional analogue of)
the so-called Brans-Dicke-Jordan (or simply Jordan) frame. In this case the physical 4-dimensional
metric g(4) is defined as 4-dimensional section of the multidimensional metric g, i.e. g(4) = g(4,J), where

g = g(4,J) +
n∑
i=4

a2i (t)dy
i ⊗ dyi

.
When the Einstein-Pauli (or simply Einstein) frame is used, we put g(4) = g(4,E) = (

∏n
i=4 ai(t))g

(4,J)

and hence we get the effective gravitational constant to be an exact constant: GE
eff = GJ

eff(t)
∏n

i=4 ai(t) =
const (Rainer, Zhuk, 1999).
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2 The model

2.1 The set-up

Here we consider the manifold
M = (t−, t+)×M1 × . . .×Mn, (2.1)

with the metric

g = −e2γ(t)dt⊗ dt+
n∑
i=1

e2β
i(t)dyi ⊗ dyi, (2.2)

where i = 1, . . . , n; M1, ...,Mn are one-dimensional manifolds (either R or S1) and n > 3. The functions
γ(t) and βi(t), i = 1, . . . , n, are smooth on (t−, t+).

For physical applications we put M1 = M2 = M3 = R, while M4, ...,Mn may be considered to be
compact ones (i.e. coinciding with S1).

The integrand in (1.1), when the metric (2.2) is substituted, reads as follows√
|g|{α1R[g] + α2L2[g]} = L+

df

dt
, (2.3)

where

L = α1(e
−γ+γ0Gijβ̇

iβ̇j − 2Λeγ+γ0)− 1

3
α2e

−3γ+γ0Gijklβ̇
iβ̇jβ̇kβ̇l, (2.4)

γ0 =
∑n

i=1 β
i and

Gij = δij − 1, (2.5)

Gijkl = GijGikGilGjkGjlGkl (2.6)

are respectively the components of two metrics on Rn [4, 5]. The first one is “minisupermetric” -
2-metric of pseudo-Euclidean signature and the second one is the Finslerian 4-metric [4, 5]. Here we
denote Ȧ = dA/dt etc. The function f(t) in (2.3) is irrelevant for our consideration (see [4, 5]).
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The equations of motion corresponding to the action (1.1) have the following form

EMN = α1E (1)MN + α2E (2)MN = 0, (2.7)

where

E (1)MN = RMN −
1

2
RgMN + ΛgMN , (2.8)

E (2)MN = 2(RMPQSR
PQS

N − 2RMPR
P

N

−2RMPNQR
PQ +RRMN)− 1

2
L2gMN . (2.9)

It may be shown that the field eqs. (2.7) for the metric (2.2) are equivalent to the Lagrange equations
corresponding to the Lagrangian L from (2.4).

Thus, eqs. (2.7) read as follows

α1(Gijβ̇
iβ̇j + 2Λe2γ)− α2e

−2γGijklβ̇
iβ̇jβ̇kβ̇l = 0, (2.10)

d

dt
[2α1Gije

−γ+γ0β̇j − 4

3
α2e

−3γ+γ0Gijklβ̇
jβ̇kβ̇l]− L = 0, (2.11)

i = 1, . . . , n; and L is defined in (2.4).
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Now we put γ = 0. By introducing “Hubble-like” variables hi = β̇i, eqs. (2.10) and (2.11) may be
rewritten as follows

E = E(h) ≡ Gijh
ihj + 2Λ− αGijklh

ihjhkhl = 0, (2.12)

Ui = Ui(ḣ, h) ≡ dLi
dt

+ (
n∑
j=1

hj)Li − L0 = 0, (2.13)

where α = α1/α2,

L0 = Gijh
ihj − 2Λ− 1

3
αGijklh

ihjhkhl, (2.14)

and

Li = Li(h) = 2Gijh
j − 4

3
αGijklh

jhkhl, (2.15)

i = 1, . . . , n. Thus, we are led to the autonomous system of the first-order differential equations on
h1(t), . . . , hn(t) (see [4, 5] for Λ = 0). Due to (2.12) we have L0 = 2

3(Gijh
ihj − 4Λ).

In what follows we will use instead of (2.12), (2.13) an equivalent set of equations: (2.12) and

Yi = Yi(ḣ, h) ≡ dLi
dt

+ (
n∑
j=1

hj)Li −
2

3
(Gijh

ihj − 4Λ) = 0. (2.16)

We note that the following identity is valid Ui(ḣ, h) = Yi(ḣ, h)− 1
3E(h).
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2.2 Polynomial equations for solutions with constant hi

Let us consider the following solutions to eqs. (2.12) and (2.16)

hi(t) = vi, (2.17)

with constant vi, which correspond to the solutions

βi = vit+ βi0, (2.18)

where βi0 are constants, i = 1, . . . , n.
In this case we obtain for the metric

g = −dt⊗ dt+
n∑
i=1

B2
i e

2vitdyi ⊗ dyi, (2.19)

where Bi > 0 are arbitrary constants.
For the fixed point v = (vi) we have the set of polynomial equations

E = E(v) = Gijv
ivj + 2Λ− αGijklv

ivjvkvl = 0, (2.20)

Yi = Yi(0, v) = (
n∑
j=1

vj)Li(v)− 2

3
Gkjv

kvj +
8

3
Λ = 0, (2.21)

where Li is defined in (2.15), i = 1, . . . , n. For n > 3 this is the set of forth-order polynomial equations.
Proposition 1. [4] For any solution v = (v1, . . . , vn) to polynomial eqs. (2.20), (2.21) with n > 3

there are no more than three different numbers among v1, ..., vn, if
∑n

i=1 v
i 6= 0.
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Here we deal with the ansatz which contain two Hubble parameters

v = (vi) = (H, . . . , H, h, . . . , h) (2.22)

where H appears m-times and h appears l-times, n = m+ l.
with two restrictions imposed

mH + lh 6= 0, H 6= h. (2.23)

In what follows we adopt the following agreement for indices: µ, ν, . . . = 1, . . . ,m; α, β, . . . =
m+ 1, . . . , n. Thus, vµ = H and vα = h.

In this case the set of n+ 1 eqs. (2.12), (2.13) is equivalent to the set of two equations

E = mH2 + lh2 − (mH + lh)2 + 2Λ− α[m(m− 1)(m− 2)(m− 3)H4

+4m(m− 1)(m− 2)lH3h+ 6m(m− 1)l(l − 1)H2h2

+4ml(l − 1)(l − 2)Hh3 + l(l − 1)(l − 2)(l − 3)h4] = 0, (2.24)

1 + 2αQ(H, h) = 0, (2.25)

where
Q(H, h) = (m− 1)(m− 2)H2 + 2(m− 1)(l − 1)Hh+ (l − 1)(l − 2)h2. (2.26)

For general scheme of reduction see [7] (Chirkov et al).
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3 Stability of fixed point solutions hi(t) = vi

Here we study the stability of static solutions hi(t) = vi to eqs. (2.12) and (2.13) in linear approximation
in pertubations. We put

hi(t) = vi + δhi(t), (3.1)

i = 1, . . . , n. By substitution (3.1) into eqs. (2.12) and (2.13) we obtain in linear approximation the
following relations for perturbations δhi

Ci(v)δhi = 0, (3.2)

Lij(v)δḣj = Bij(v)δhj, (3.3)

where

Ci = Ci(v) = 2vi − 4αGijksv
jvkvs, (3.4)

Lij = Lij(v) = 2Gij − 4αGijksv
kvs, (3.5)

Bij = Bij(v) = −(
n∑
k=1

vk)Lij(v)− Li(v) +
4

3
vj. (3.6)

We remind that vi = Gijv
j, Li(v) = 2vi − 4

3αGijksv
jvkvs and i, j, k, s = 1, . . . , n.

We put the following restriction on the matrix L = (Lij(v))

(R) det(Lij(v)) 6= 0, (3.7)

i.e. the matrix L should be invertible.
Here we restrict ourselves by exponential solutions (2.19) with non-static volume factor, which is

proportional to exp(
∑n

i=1 v
it), i.e. we put

K = K(v) =
n∑
i=1

vi 6= 0. (3.8)
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Then it may proved that eq. (3.3) reads

Lij(v)δḣj = −(
n∑
k=1

vk)Lijδh
j, (3.9)

or, equivalently,

δḣi = −(
n∑
k=1

vk)δhi, (3.10)

i = 1, . . . , n. Here we used the restriction (3.7).
Thus, the set of linear equations on perturbations (3.2), (3.3) is equivalent to the set of linear eqs.

(3.2), (3.10), which has the following solution

δhi = Ai exp(−K(v)t), (3.11)
n∑
i=1

Ci(v)Ai = 0. (3.12)

i = 1, . . . , n. We remind that K(v) =
∑n

k=1 v
k.

Due to (3.11) that the following proposition is valid.
Proposition 2. The fixed point solution (hi(t)) = (vi) (i = 1, . . . , n; n > 3) to eqs. (2.12), (2.13)

obeying restrictions (3.7), (3.8) is stable under perturbations (3.1) (as t→ +∞) if K(v) =
∑n

k=1 v
k > 0

and it is unstable (as t→ +∞) if K(v) =
∑n

k=1 v
k < 0.
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Now let us consider the matrix (3.5) for the anisotropic case (2.22) with two Hubble parameters
obeying (2.23).

For the the ansatz (2.22) we obtain

Lµν = Gµν(2 + 4αSHH), (3.13)

Lµα = Lαµ = −2− 4αSHh, (3.14)

Lαβ = Gαβ(2 + 4αShh). (3.15)

Here SHH , SHh and Shh are defined (Sij = Gijksv
kvs) as follows

SHH = (m− 2)(m− 3)H2 + 2(m− 2)lHh+ l(l − 1)h2, (3.16)

SHh = (m− 1)(m− 2)H2 + 2(m− 1)(l − 1)Hh+ (l − 1)(l − 2)h2, (3.17)

Shh = m(m− 1)H2 + 2m(l − 2)Hh+ (l − 2)(l − 3)h2. (3.18)

Here we denote: Sµν = SHH for µ 6= ν; Sµα = Sαµ = SHh; Sαβ = Shh for α 6= β.
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But here we have a remarkable coincidence (see (2.26))

Q(H, h) = SHh, (3.19)

which implies Lµα = Lαµ = 0 due to eq. (2.25). Thus under restrictions (2.23) assumed the matrix
(Lij) has a block-diagonal form

(Lij) = diag(Lµν, Lαβ). (3.20)

This matrix is invertible if and only if m > 1, l > 1 and

SHH 6= −
1

2α
, Shh 6= −

1

2α
. (3.21)

We remind that m×m matrix (Gµν) and l × l matrix (Gαβ) are invertible only for m > 1 and l > 1,
respectively.
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4 Examples

Here we consider several examples of exponential solutions and analyse their stability.

4.1 Solution for m = 3, l = 2 and Λ = 0.

Let us consider the case m = 3, l = 2, Λ = 0. We have the following solution to the set of polynomial
eqs. (2.24), (2.25) with H > 0:

H =
1

6
(7 + 4 · 101/3 + 102/3)1/2α−1/2 ≈ 0.750173α−1/2, (4.1)

h = −1

6
(7− 0.5 · 101/3 + 102/3)1/2α−1/2 ≈ −0.541715α−1/2. (4.2)

It the approximate form this solution was found earlier by D. Ratanov (RUDN), in analytic form
(different from (4.1), (4.2)) it was obtained in [6].

Using (3.16) and (3.18) we get

SHH = 2h(2H + h) ≈ −1.038610α−1, Shh = 6H2 ≈ 3.376557α−1. (4.3)

Relations (3.21) are valid and hence the first restriction (3.7) is satisfied. The second restriction (3.8)
is also satisfied since K(v) = 3H + 2h > 0. Thus, due to Proposition 2, the solution is stable in
agreement with [9].
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4.2 Solution for m = l = 3 and Λ = 0

Now we consider solutions with m = 3, l = 3 and Λ = 0. There are two solutions to eqs. (2.24), (2.25)
with H > 0:

H1 =
1

4
(
√

5− 1)α−1/2, h1 =
1

4
(−
√

5− 1)α−1/2, (4.4)

and

H2 =
1

4
(
√

5 + 1)α−1/2, h2 =
1

4
(−
√

5 + 1)α−1/2. (4.5)

For the first solution we get

SHH =
3

4
(
√

5 + 1)α−1, Shh =
3

4
(−
√

5 + 1)α−1, (4.6)

while for the second one we obtain

SHH =
3

4
(−
√

5 + 1)α−1, Shh =
3

4
(
√

5 + 1)α−1. (4.7)

In both cases relations (3.21) are satisfied and hence the first restriction (3.7) is valid. The second
restriction (3.8) is also valid for any of these solutions since K(v1) = 3H1 + 3h1 = −3

2α
−1/2 < 0 and

K(v2) = 3H2 + 3h2 = 3
2α
−1/2 > 0. According to Proposition 2 the first solution (4.4) is unstable, while

the second one (4.5) is stable.
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4.3 Solution for m = 11, l = 16 and Λ = 0

For Λ = 0 the solution (2.19) with v = (vi) from (2.22), m = 11, l = 16 and

H =
1√
15α

, h = − 1

2
√

15α
(4.8)

was found in [8]. This solution describes the zero variation of the effective cosmological constant G.
The calculations give us

SHH = −4

5
α−1, Shh =

1

10
α−1. (4.9)

Due to (3.21) the symmetric matrix (Lij), which has a block-diagonal form, is invertible, i.e. the
condition (3.7) is satisfied.

We find (Ci) = (Cµ = 12H,Cα = 18H). From (3.11) we get the following solution for perturbations

δhi = Ai exp(−3Ht), (4.10)

2
11∑
µ=1

Aµ + 3
27∑

α=12

Aα = 0, (4.11)

where H = 1√
15α

, i = 1, . . . , 27. Thus, the solution (4.8) is stable, as t→ +∞.
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4.4 Solution for m = 15, l = 6 and Λ = 0

Now we consider another exponential solution (2.19) from [8] with v = (vi) from (2.22), m = 15, l = 6,
Λ = 0 and

H =
1

6
α−1/2, h = −1

3
α−1/2. (4.12)

We get

SHH = −α−1, Shh =
1

2
α−1. (4.13)

According to (3.21) the symmetric block-diagonal matrix (Lij) is non-degenerate one.
We get (Ci) = (Cµ = 14

3 , Cα = 20
3 ). Due to (3.11) the solution for perturbations reads

δhi = Ai exp(−3Ht) = Ai exp(−1

2
α−1/2t), (4.14)

7
15∑
µ=1

Aµ + 10
21∑

α=16

Aα = 0, (4.15)

i = 1, . . . , 21. Hence, the solution (4.12) is stable as t→ +∞.
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4.5 Solutions with m ≥ 3, l > 1 and certain Λ > 0

Here we consider the following solution to eqs. (2.24), (2.25) for m > 2, l > 1 and α < 0:

H2 = − 1

2α(m− 1)(m− 2)
, h = 0, (4.16)

which is valid for

Λ = − m(m+ 1)

8α(m− 1)(m− 2)
> 0. (4.17)

We get from (3.16) and (3.18)

SHH = (m− 2)(m− 3)H2 = − m− 3

2α(m− 1)
6= − 1

2α
(4.18)

and

Shh = m(m− 1)H2 = − m

2α(m− 2)
6= − 1

2α
, (4.19)

which implies the fulfilment of the restriction (3.7) (here m > 2 and l > 1). Since K(v) = mH we get
from Proposition 2 that the cosmological solution (2.19) with H, h from (4.16) is stable for H > 0 and
unstable for H < 0.

6 - examples of solutions with G = const and Λ 6= 0 in V. D. Ivashchuk, On Stable Exponential
Solutions in Einstein-Gauss-Bonnet Cosmology with Zero Variation of G, Gravitation and Cosmology,
Vol. 22, No. 4, pp. 329-332 (2016) (in press).
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4.6 A subclass of solutions with zero variation of G

The 4d effective gravitational constant is proportional to inverse volume scale factor of the internal
space, i.e.

G ∼
n∏
i=4

[ai(t)]
−1, (4.20)

where ai(t) = exp(βi(t)).
For the solutions (2.19) we obtain the following relations

G(t) = G(0) exp (−Kintt), Kint(v) =
n∑
i=4

vi, (4.21)

which imply
Ġ

G
= −Kint(v). (4.22)

Now, let us consider a subclass of cosmological solutions (2.19) which obey restriction (3.7) and
describe an exponential isotropic expansion of 3-dimensional flat factor-space with v1 = v2 = v3 =
H > 0 with zero variation of G. Then we get from (4.22) Kint(v) = 0 and hence K(v) =

∑n
i=1 v

i =
3H + Kint(v) = 3H > 0. According to Proposition 2 any solution from this subclass is stable. Three
solutions from the previous subsection: (4.8), (4.12) and (4.16) with m = 3 (and l > 1) belong to this
subclass.
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5 Conclusions

We have considered the (n+1)-dimensional Einstein-Gauss-Bonnet (EGB) model with the Λ-term. By
using the ansatz with diagonal cosmological metrics, we have studyed the stability of solutions with
exponential dependence of scale factors ai ∼ exp (vit), i = 1, . . . , n, with respect to synchronous time
variable t in dimension D > 4.

The problem was reduced to the analysis of stability of the fixed point solutions hi(t) = vi to eqs.
(2.12) and (2.16), where hi(t) are Hubble-like parameters.

In this paper a set of equations for perturbations δhi was considered (in linear approximation) and
general solution to these equations was found. We have proved (in Proposition 2) that the solutions
with non-static volume factor, i.e. with K(v) =

∑n
k=1 v

k 6= 0, which obey restriction (3.7), are stable
if K(v) > 0 while they are unstable if K(v) < 0.

We have also proved (in Proposition 1) that for any exponential solution with v = (v1, ..., vn) there
are no more than three different numbers among v1, ..., vn, if

∑n
i=1 v

i 6= 0.
Here we have presented several examples of stable cosmological solutions with exponential behavior

of scale factors. We have also shown that general solutions with v1 = v2 = v3 = H > 0 and zero
variation of the effective gravitational constant are stable if the restriction (3.7) is obeyed.

Acknowledgments

This talk was funded by the Ministry of Education and Science of the Russian Federation in the
Program to increase the competitiveness of Peoples Friendship University (RUDN University) among
the world’s leading research and education centers in the 2016-2020 and by the Russian Foundation
for Basic Research, grant Nr. 16-02-00602.

19



References

[1] E.V. Pitjeva, Updated IAA RAS Planetary Ephemerides-EPM2011 and Their Use in Scientific Research, Astron.
Vestnik 47(5), 419-435 (2013), arXiv: 1308.6416.

[2] N. Deruelle, On the approach to the cosmological singularity in quadratic theories of gravity: the Kasner regimes,
Nucl. Phys. B 327, 253-266 (1989).

[3] A. Toporensky and P. Tretyakov, Power-law anisotropic cosmological solution in 5+1 dimensional Gauss-Bonnet grav-
ity, Grav. Cosmol. 13, 207-210 (2007); arXiv: 0705.1346.

[4] V.D. Ivashchuk, On anisotropic Gauss-Bonnet cosmologies in (n + 1) dimensions, governed by an n-dimensional
Finslerian 4-metric, Grav. Cosmol. 16(2), 118-125 (2010); arXiv: 0909.5462.

[5] V.D. Ivashchuk, On cosmological-type solutions in multidimensional model with Gauss-Bonnet term, Int. J. Geom.
Meth. Mod. Phys. 7(5), 797-819 (2010); arXiv: 0910.3426.

[6] D. Chirkov, S. Pavluchenko and A. Toporensky, Exact exponential solutions in Einstein-Gauss-Bonnet flat anisotropic
cosmology, Mod. Phys. Lett. A 29, 1450093 (11 pages) (2014); arXiv:1401.2962.

[7] D. Chirkov, S.A. Pavluchenko and A. Toporensky, Non-constant volume exponential solutions in higher-dimensional
Lovelock cosmologies, Gen. Relativ. Gravit. 47: 137 (33 pages) (2015); arXiv: 1501.04360.

[8] V.D. Ivashchuk and A.A. Kobtsev, On exponential cosmological type solutions in the model with Gauss-Bonnet term
and variation of gravitational constant, Eur. Phys. J. C 75: 177 (12 pages) (2015); arXiv:1503.00860.

[9] S.A. Pavluchenko, Stability analysis of exponential solutions in Lovelock cosmologies, Phys. Rev. D 92, 104017 (2015);
arXiv: 1507.01871.

[10] K.K. Ernazarov, V.D. Ivashchuk and A.A. Kobtsev, On exponential solutions in the Einstein-Gauss-Bonnet cosmology,
stability and variation of G, Grav. Cosmol., 22(3), (2016).

20



Thank you for your attention!

21


