

Vladimir Berdnikov

Commissioning of the Pair Spectrometer of the GlueX experiment

Jefferson Lab 12 GeV Upgrade

Hall D Physics Program: Approved Experiments

Experiment	Name	Days	Condition	Target
E12-06-102	Mapping the spectrum of light quark mesons and gluonic excitations with Linearly polarized photons	120		LH ₂
E12-12-002 E12-13-003	A study of meson and baryon decays to strange final states with GlueX in Hall D	220 (200)	L3 trigger PID	LH ₂
E12-10-011	A precision measurement of the η radiative decay width via the Primakoff effect	79		LH ₂ LHe ₄
E12-13-008	Measuring the charged pion polarizability in the $\gamma\gamma \rightarrow \pi^+\pi^-$ reaction	25		Sn
C12 14 004	Eta docave with omphasis on raro poutral	(120)	Ungrado	1 🖬
(conditionally approved)	modes: The JLab Eta Factory experiment (JEF)	(120)	Forward calorim.	LΠ2

GlueX Collaboration in Hall D

- Arizona State
- Athens
- Carnegie Mellon
- Catholic University
- University of Connecticut
- Florida International
- Florida State
- George Washington
- Glasgow
- GSI
- Indiana University
- ITEP
- Jefferson Lab
- University Mass Amherst

- MIT
- NRNU MEPhI
- Norfolk State
- North Carolina A&T
- University North Carolina Wilmington
- Northwestern
- University of Regina
- Santa Maria
- Tomsk
- Yerevan Physics Institute
- College of William and Mary
- Wuhan University

International collaboration from 24 institutions **Two more groups are currently joining**

Hall D Timeline

✓ First commissioning data in Fall 2014 / Spring 2015

- Beamline / detector commissioning
- Beam energy below 6 GeV
- Some liner polarization
- ✓ Commissioning run in Fall 2015 / Spring 2016
 - 12-GeV electron beam
 - Linearly polarized photon beam
 - Low luminosity (5 times smaller)
 - GlueX commissioning completed
- Physics running: Fall 2016 Spring 2018
- PrimEx D Experiment: Fall 2018 (Plan)
- ➢ High intensity GlueX running: Starting in spring 2019 (Plan)
 - Upgrade kaon identification in 2018

Hall-D Complex

GlueX Spectrometer: Design Requirements

• Optimized to detect multi-particle final states

• Hermetic, large/uniform acceptance for charged and neutral particles, good energy and momentum resolution

Tracks:	σ_p / p	$\sim 2-5$ %		
Photons:	$\sigma_{\rm E}^{\rm r}$ / E	$= 6 \% / \sqrt{E}$	\oplus	1.6 %
Acceptance:	$1^{\circ} < \theta$	< 120°		

• Operate with high-intensity polarized photon beams

wafer

beam

10/11/16

Polarized Photon Beam

- Beam photons are produced by 12 GeV electrons (I < 1.1 μA) on a thin diamond crystal (20 – 50 μm)
 Photon energy: detect bremsstrahlung electrons Δ E / E ~ 10⁻³
- Pass beam photons through the collimator
 - increase the fraction of linearly polarized photons
 - beam intensity: $5{\cdot}10^7\,\gamma/sec~$ for 8.4 $\,< E_{\gamma}\,< 9.1~GeV$

Photon Tagger

Photon Flux and Beam Polarization: Pair Spectrometer

Two layers of scintillator detectors:

High-granularity hodoscope (measure photon energy in the range 6 - 12 GeV)

Low-granularity counters (use in the trigger)

• Reconstruct the energy of a beam photon by detecting the e[±] pair produced by the photon in a thin converter

- measure the spectrum of the collimated photon beam
- monitor the photon beam flux
- calibrate energy of tagger detectors

Pair Spectrometer Detectors

Hodoscope

Low – Granularity Counters

- e[±] energy measurements
- $\sigma(E_{\gamma}) \sim 25 30$ MeV at beam end-point energy
- cover energy range for e^{\pm} between 3 GeV and 6.25 GeV
- detector based on 1 mm and 2 mm wide scintillator tiles
- detector width ~23 cm
- use 3 mm x 3 mm 50µm SiPMs as photodetectors
- 128 + 128 = 256 ch read out by FADC250 (1 VXS crate)

- help to reduce BG originating in the magnet
- provide timing measurements (coincidence with tagger)
- 8 + 8 = 16 thick scintillators
- use in the trigger
- electronics:
- FADC250
- LE discriminator
- F1TDC

Pair spectrometer and dipole magnet

Pair Spectrometer Installed in Hall D

PS Performance during First Commissioning Runs

- Require coincidence of hits between PS and PSC in one detector arm
- Constrain photon beam energy using TAGH
- PS hodoscope detection efficiency > 95 %
- The coincidental background is on the level of 1 1.5 %

Pair Spectrometer Energy Calibration

Run 4458

Energy corrected by about 4 % to match with the 12 GeV endpoint
 implement current PS energy calibration in the PS reconstruction

> The energy spectrum is in a 'reasonable' agreement with cobrems

ICPPA-2016 Moscow Russia

Pair Spectrometer Acceptance Calibration

> Data samples were acquired for three converters

- 5.7 x 10⁻³ R.L. Al (508 µm foil) run 10851
- 2.1 x 10⁻³ R.L. Be (750 µm foil) run 10852
- 0.21 x 10⁻³ R.L. Be (75 μ m foil)

➢ Run conditions

- 3.4 mm collimator , $2 \cdot 10^{-5}$ radiator, 2 nA beam current

➤ Trigger

- run two triggers in parallel: PS and TAC (energy sum)
- PS rate: 10 Hz 750 μm Be
- TAC rate: 200 300 kHz (trigger prescaling factor 129)

Acceptance Calibration

Compute number of triggers N_{PS} and N_{TAC} acquired for each TAGH counter

Coincidental rate < 10 %

$$A = \frac{9}{7} \cdot \frac{N_{PS}}{N_{TAC}} \cdot \frac{Eff_{TAC}}{Eff_{PS}} \cdot \frac{1}{L \cdot P}$$

- *L* converter thickness in R.L. (has not been measured)
- P = 129 is the prescaling factor for the TAC trigger

Assume that Eff $_{TAC, PS} = 1$

Pair Spectrometer Spectrum

No acceptance corrections

Acceptance corrected

Pair Spectrometer Spectrum

PS Energy Resolution

PSC Time Resolution

• Time resolution of PS coarse counters $\sigma_t < 150 \text{ ps}$

PS Trigger and Data Sample

• Trigger based on hit coincidence between two arms of PSC

- Took calibration data with the PS trigger
 - read out pair spectrometer and TAGM/TAGH crates.
- Operated PS trigger in parallel with other trigger types for production runs.

GlueX Detector

BACKUP SLIDES

Exotic Mesons

Excited gluonic field coupled to a qq pair can result in hybrid mesons with exotic J^{PC}

Predicted by several models. Recent calculations using lattice QCD - constituent gluon with J^{PC} = 1⁺⁻ and mass 1 – 1.5 GeV

Lattice QCD Predictions

Dudek et al. PRD 88 (2013) 094505

Lattice QCD Predictions

Mass predictions:

	11-+	$2.0 - 2.4 \text{ GeV/c}^2$
JîPC	01+-	$2.3 - 2.5 \text{ GeV/c}^2$
	21+−	2.4 – 2.8 GeV/c ²

 Lattice calculations predict light-quark hybrid mesons and with strange quark content

 good identification of kaons required (GlueX PID upgrade)

• Search for mesons in many final states

SS

Search Modes of Exotic Decays

JPC	Exotic Meson	Possible Decays
1 -+	π ₁ (1900)	$πρ$, $πb_1$, $πf_1$, $πη'$, $ηa_1$
	η ₁ (2100)	η f ₂ , a ₂ π, ηf ₁ , ηη', π(1300) π
	$\eta_1'(2300)$	K[*]K , K ₁ (1270) K, K ₁ (1410) K, ηη'
2 + -	b ₂ (2500)	$ωπ$, $a_2π$, $ρη$, $f_1ρ$, $a_1π$, $h_1π$, $b_1η$
	h ₂ (2500)	ρπ, $b_1\pi$, ωη, $f_1\omega$
	h ₂ '(2600)	$K_1(1270)$ K, $K_1(1410)$ K, K_2^* K, $\phi\eta$
0+-	$b_0(2400)$	$\pi(1300) \pi, h_1\pi, f_1\rho, b_1\eta$
	$h_0(2400)$	$b_1\pi, h_1\eta$
	$h_0'(2500)$	$K_1(1270)$ K, $K_1(1460)$ K, $h_1\eta$

Multiparticle final states:

- (p,n) + 3π, 4π, 3πη, 4πη ...
- 70% of decays involve at least one π^0
- 50% more than two π^0

Experimental Status

Exotic mesons have been searched in several experiments: GAMS, VES, CBAR, E852, COMPASS, CLAS

 \blacktriangleright Exotic Meson Candidate (J^{PC} = 1⁻⁺)

π ₁ (1400) → ηπ
π ₁ (1600) → η′π
$\pi_1(1600) \rightarrow \rho \pi$
$\pi_1(1600) \rightarrow b_1 \pi$
$\pi_1(1600) \rightarrow f_1\pi$
$\pi_1(2000) \to t_1\pi$

Seen by several experiments. Interpretation unclear: dynamic origin, 4-quark state. Not a hybrid (?)

- First seen by VES, E852, COMPASS
- 3π controversial:
 - 3π not seen in photoproduction (CLAS)
- May be a hybrid
- Need more analysis and data
- $\pi_1(2000) \rightarrow b_1\pi$
- Seen by E852 (but not seen by VES)
 - Statistics is limited
 - May be a hybrid
 - Exotic meson candidates, but no strong evidence •

Reconstruct exotic mesons in many final state. More data are needed 10/11/16

29

Photoproduction of Exotic Mesons

Exchange particle		Final States		
Ρ	0 +	0 +- , 2 +-	b ⁰ , h, h'	
π ⁰	0 -	2 +-	b ₂ ⁰ , h ₂ , h ₂ '	
π^{\pm}	0 -	1-+	π_1^{\pm}	
ω	1-	1-+	$\pi_{1}, \eta_{1}, \eta_{1}'$	

□ t-channel exchange

- couple to photoproduction (via Vector Meson Dominance)
- Polarized photon beam helps to determine production mechanism (naturality) 10/11/16
 ICPPA-2016 Moscow Russia

Photon Beam Requirements

Experiment	Photon Energy Range (GeV)	Polarization	Photon Flux γ/ sec
GlueX Search for gluonic excitations in the spectra of light mesons	8.4 - 9.0	44 %	5 · 10 ⁷
PrimEx A precision measurement of the $\eta \rightarrow \gamma \gamma$ decay width via the Primakoff effect	10.5 - 11.7	None	7.6 · 10 ⁶
Measuring the charged pion polarizability	5.5 - 6.0	76 %	107

Prototype Construction & Performance

21 scintillator tiles (EJ – 212)
1 cm x 2 cm x 1 mm and
1 cm x 2 cm x 2 mm

- 1 mm x 1 mm WLS square double-clad fiber (BCF-92) glued to one side of the tile:
 - checked several UV glues
 - consider to use optical cement BC-600 for the final production
- Use 50 μm (18 ch) and 25 μm (3 ch) 1x1 mm² SiPMs (Ceramic package)

Mounting Structure

Chuck Hutton

