Test of nuclear fragmentation models with carbon fragmentation at 0.3 GeV/n

B.M.Abramov, P.N.Alekseev, Yu.A.Borodin, S.A.Bulychjov, I.A.Dukhovskoy, A.I.Khanov, A.P.Krutenkova, V.V.Kulikov, M.A.Martemyanov, M.A.Matsyuk, E.N.Turdakina

ITEP NSC “Kurchatov Institute”, Moscow, Russia

K.K. Gudima

Institute of Applied Physics, Chisinau, Moldova

S.G. Mashnik

Los Alamos National Laboratory, New Mexico, USA
Experiment **FRAGM** at ITEP TWAC (Moscow)

\[^{12}\text{C} + \text{A} \rightarrow f + X \]
(inverse kinematics)

- fragments: \(\text{p, d, t, } ^3\text{He, } ^4\text{He, } ^6\text{He, } ^6\text{Li, } \ldots, ^{10}\text{C, } ^{11}\text{C, } ^{12}\text{C} \)
- \(^{12}\text{C}\) kinetic energy: \(0.2 - 3.2\) GeV/nucleon
- fragment angle: \(3.5^\circ\) with respect to \(^{12}\text{C}\) beam
- different targets: Be, Al, Cu, Ta for \(^{12}\text{C}\) beam of 0.3 GeV/n
- sensitivity: up to 6 orders of the cross section magnitude

I will focus on the results of the run with different targets at 0.3 GeV/n

- good data for carbon fragmentation are needed for overall understanding of nucleus-nucleus collisions
- the carbon fragmentation in this energy region is also important for application in ion therapy where fragmentation is a main source of irradiation behind Bragg peak
- few ion-ion interaction models exist that aim at precise description of fragmentation processes. They have to be tested at different processes.
ITEP accelerator complex TWAC

Proton linac I–2, 25 MeV, 200 mA
Ion linac I–4, 7 MeV/n, 100 mA
Ion laser source

Booster synchrotron
20 Hz, 1 GeV/n

Main ring

Experimental Hall

Beams from internal target and slow extraction of protons and ions up to 10 GeV

Proton and ion beams from internal target

Multiple injection

Proton and ion acceleration:
- 50 – 10000 MeV

Ion acceleration:
- up to 4 GeV/nucleon

Ion accumulation:
- up to 700 MeV/nucleon

Accelerating ions:
- up to 56Fe

Typical intensity:
- 10^{11} nucleons / s

TWAC current parameters

TWAC= TeraWatt Accumulator Complex

ICPPA, October 2016, V. Kulikov
Beam line spectrometer

- Beam line length: 42 m
- Two bending magnets: K310C3 (bending angle: $\alpha = 0.259$ rad.), B313C2 ($\alpha = 0.276$ rad.)
- Five quadrupoles: K310I1, B313I3 (vertical focusing) and K310I2, B313B1, B313I4 (horizontal focusing)

- Scintillation counters for TOF and dE/dx measurement: CF1, CF2, C2, C3
- C2 generates trigger
- H1 – hodoscope of 20 elements
- Č – Cherenkov counter

Max. rigidity 6 GeV/c
Example of fragment selections at 0.3 GeV/nucleon

- QDC (from CF1) vs TOF between CF1 and C2
- Regions of the different fragments are well separated
- TOF is a function of A, QDC is a function of Z
Fragment momentum spectra, Be target, 300 MeV/n
From GEANT4 package (supported by CERN)

- Liege Intranuclear Cascade (INCL++): (J. Dudouet et al., PR C89 (2014)054616)
- 10M ion–ion interactions have been generated for each model

Los Alamos version of the Quark Gluon String Model (LAQGSM03.03) (by courtesy of S. Mashnik, and K.Gudima): (LA-UR-11-01887)

A simple statistical approach to projectile fragmentation

- Gaussian shape of fragment momentum spectra
- Widths of the fragment momentum spectra in projectile rest frame are independent from projectile energy and target nucleus (limiting fragmentation)
- Parabolic law for the width (Goldhaber 1974)
Structure of ion-ion interactions model

Figure 1: General scheme of nuclear reaction calculations by LAQGSM03.03.
FRAGM data (red/pink) vs INCL and QMD (blue)

Very good agreement for p,d,He4, Li6,B10, reasonable for He6,Li8,Be10, bad for B8(absent in this scale), C12

Reasonable for p-Li6, for all others production is strongly overestimated
FRAGM data (red/pink) vs BC and LAQGM (blue)

- Normalization: good agreement for all fragments except B10, Be10, C12 (overestimated) and B8 (absent in this scale).
- Reasonable for all fragments, peaks are slightly shifted to higher momentum, for C12 there is no prediction.
Proton momentum spectrum

Linear scale

Log scale

Beam momentum

SM

QMD

σ of gaussian

300 MeV/n

Forbidden for C+p=p+X

Forbidden for p+p=p+X

Fragmentation peak

Cumulative region

Shift = Beam momentum – mean;

σ will be called “width” of the peak
Test of Goldhaber parabolic law

\[\sigma_F^2 = \sigma_0^2 A_F (A - A_F) / (A - 1) \]

$$\sigma_0 = 90 \text{ MeV/c}$$

Widths depend only on \(A \), not on \(Z \)
Limiting fragmentation is valid even for 300 MeV/n
Widths depend on fragment emission angle

Dependence of fragmentation peak width
On fragment emission angle in MC models

- this experiment, 300 MeV/n, 3.5°
- D.E. Greiner et al., 1.0 GeV/n, 0°
Target dependence of fragmentation peak width/shift

Widths are independent of target nuclei with accuracy of 5 MeV/c for light and 15 MeV/c for heavy fragments.

Shifts per nucleon have a tendency to decrease for Ta-target by 5-10 MeV/c per nucleon.
Fragment momentum spectra from ^{12}C fragmentation at 300 MeV/n were measured with high precision on four target nuclei.

The spectra were compared to predictions of four transport codes: BC, INCL, LAQGSM and QMD. All models give the description of fragmentation peaks from very good to reasonable except for few above mentioned points.

2) Main terms of simplest statistical models have been tested and found valid even for 300 MeV/n.
Thank You