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A review of the LUX experiment, a two-phase Xe TPC
The first LUX result (2013-4) and its re-analysis (2014-5)
Details of internal electric field post grid conditioning

332 live-day WIMP search run (300 live-days salted)

Salting of data with NR events as a form of blinding
Latest LUX sensitivity to WIMP-nucleon Sl cross-section
First-run SD sensitivity, and preliminary axion/ALP limits

A bright future: more LUX, plus ton-scale LZ detector



Xe-based TPCs have been
leading pack for 10 years

XENON10, ZEPLIN-II/II,
XENON100, now LUX/LZ

PMTs convert single
photons into single photo-
electrons (phe)

phd = photons detected,
— term coined by LUX

! Outaoin (better-resolution

i going ;

| Particle counting method)

i : Time between S1 and S2
R - ' gives you depth (Z), and
S2 top hit pattern is radial

position (X and Y)

LUX is @Sanford Lab, Lead



~1:1 ratio: 50 x 50 cm dodecagonal
cylinder of highly reflective PTFE

370 kg LXe in total (within all crevices)
250 kg in active region (with field)

118, 145, 100 kg fiducial across
different analyses (depends on BG)

122 phototubes (2 x 61, top and bof)
Low BG, sensitive to 175 nm VUV

Xe pre-purified of Kr-85, plus re-
circulated during run for impurities

/
Ultra-low BG Ti cryostat, big thermos! /T/

~3-4 keV NR threshold (point of 50%
efficiency pre-discrimination of ER)

0.2% ER leak for ~50% NR accepted (approximate, as PLR used)



SURF (Sq nford 4850 ft. below Lead, SD.

The former site of; the

Underground Research Homestake
Facility)

" LUX s installed in the Davis
cavern, once home to, ’rhe'l:?““*j

Nobel prize-winning Ray ~ § =
Davis'neutrino experiment =<,
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LUX 2013, '14 works: 95 days

LA L L L L L I L L B L L LI L
.

9.0 19-2keVee

7.8

-'ll B 0

! by

<
_}fb
|||l||

log, [S2(phd)]
o

15 21 ' 27

llllIlI

5 10 15 20 25 30 35 40 45 50

&

o
(=)

-
)
b

S
8

Ll
=S
3

2

&
WIMP-nucleon cross section ( cm 2 )

WIMP-nucleon cross section ( zb )

.
(=)

F U TR T N N 1

L MR |
1 2

.10 10 , 10
Nuclear recoil energy (keV) my o (GeVie™)




Effects of Grid “Conditioning”




Solution: Time

/ Spac

BINS

Sep.2014

May 2016
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Gray density:
CH3T calibration
(ER)

Orange density:
DD calibration
(NR)

Solid lines:
NEST model,
band mean.

Dashed lines:
NEST model,
10-90 percentile.




light yield [photons/keV]

Light Yield [Photons/keV]
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Estimation of Backgrounds

@ Figure of merit only (we Background Expected

do a likelihood analysis) nt;ll;b;; Igit:::w

gm—

@ Bulk volume, but leakage External gamma  [-aup s
at all energies rays o=

® Low-energy, but Internal betas 1.2 + 0.06

confined to the edge of

Rn plate out

= 7 (wall background) 8.7%3.5

Accidental S1-S2

coincidences 0.34 £ 0.10

Solar 8B neutrinos

Neutrons 0.3+ 0.03
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log [S2 (phd)]

2.61

24r

2.2

2.8¢

Taking a Look at the -
Dark Matter Search Data

S1 (phd)



logIO[S2 (phd)]

3.8

fraditional blinding masks this (red)
signal region completely, plus m

e

1\

10
=
|

\
|\
11
1
1
|
1

!, % Challenge seen very often in
3r 4 the direct detection )
i ’ . . . e
)3l community is side effect of
| blindness to rare backgrounds
26F and pathologies as well _
2.4__ One may not need to go to such great
lengths to mitigate the potential for bias
22 ' ! ' : ' ' ' ' ' | ' — L | . ! . , | . ,
0) 10 20 30 40 50

S1 (phd)

17



log, [S2 (phd)]

\g \ \ \ \ 33keVnr
2.8 ! X \', a T
s\ \! \ 27 Energy contours
260 7 \ \! . added as guides
\\ \ _
74 \! 15 Salt is included.
| within next slidd!
2ol L L L .
0 10 20 30 40 50

S1 (phd)

18



log [S2 (phd)]

3.8

3.6

3.4

3.2

2.8

2.6

24

2.2

Instead of fraditional blinding, we

employ a fechnigue where take
| signal events (“salt”) are injected 8.7
into data stream. Né)T35IM!! 7.5

' '9.8keee' L e

33 keVnr

Mitigate bias while allowing for
scrutiny of individual events_|

Used already to great effect in

o
(& neutrino experiments and
n o searches for fractional charge _
oo
Plot shows data from our “16 detectors” stacked on top of each other
3
1 1 1 1 | 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1

20

30 40 50

S1 (phd)

19



log [S2 (phd)]

38 B boundary @ 3
3.6r
3 '4 -i .7;00’
32Fs
3 n

28t \ - - 33 keVnr

i * e
2 6 | \ o Black: bulk events _

i e Reg E;dbblug curves are the ER

an ands respectively

24 g Salt identified as blue dots now
29 34 A R |

0 10 20 30 40

S1 (phd)

Grey within Tcm of
our fiducial volume 7 5

50

20



log [S2 (phd)]

33 keVnr

With salt removed.
A success (!)

S1 (phd)

30

40

50

21



log [S2 (phd)]

4 After desalinization ' ' ' ' ' ' R

| but prior to limit

calculation, events

3 .8 |- outside of the ER 6.3
band re-scrtihized

33 keVnr

77 2 populations of rare
pathological events were
identified contributing 3
sub-NR-band events

Loose cuts o |
with flat, high | Post-unblinding cuts were created, targeting
(NR) signall gas S1 events and Cerenkov-like events (ligit

acceptance, mostly in 1 PMT). S1 quality cuts had been
defined only lacking, since focus was on S2 quality cuts 1

. . . 1 oncglbrtiopn N

20 (quite richl) 30 40 50
S1 (phd)

22



log [S2 (phd)]

3.8¢

p-value = 40%

N\ 33 keVnr

27
With the red events

from the previous slide]

included amongst

those removed using |

post-unblinding cuts

S1 (phd)

30 40

50

23



WIMP-nucleon Sl Exclusion

Within (loQ)
spitting distance
of coherent
neutrino
scattering
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Both LUX Runs Combined
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SD Exclusion
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SD WIMP-neutron cross-section
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Axions (LUX 95 days, and LZ
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Instrumentation enters separate project  LUX-ZEPLIN

A bigger
and
better
version of
LUX.
Funded!

LZ has just

passed its
DOE CD-

2/3b review.
(Was already
past CD-1/3a
last year.)

Cathodel high |14

voltage —>
feedthrough

120 outer

through conduits here <

from LUX

g LS

Collaboration

(A merger of 2
collaborations)

Existing
water tank

Gd-loaded
liquid
scintillator

detector PMTs —> | [

2-phase XeTPC

494 (131) TPC

(Xe skin) PMTs 28 n tubes
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m, [GeV/cz] *plot and models from LZ's Conceptual De5|gn Report, arXiv:1509.02910



# New world-leading result, from LUX's 332 live-day
search, cutting info unprobed parameter space

33,500 kg-days exposure, most of any LXeTPC ever

# More publications forthcoming: SD, axions,
iInelastic DM, more detailed longer paper on the
nitty-gritty, new calibrations that will be useful for
future experiments like LZ, S1 pulse-shape
discrimination, EFT operator limits...

Now: “Signal yields, energy resolution, and
recombination fluctuations” -arXiv:1610.02076

# LUX-ZEPLIN (LZ) will come within ~one order of
magnitude of the neutrino floor at high mass with
multi-ton-scale detector and SURF infrastructure

One of only 3 down-selected DOE Gen-2 projects
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for backup

See also especially:
hitps://idm201é.shef.ac.uk/indico/event/0/
contribution/50/material/slides/0.pdf (the first
announcement talk, by Dr. Aaron Manalaysay,
this past July at the IDM conference in the UK)

Selected Publications:
Phys. Rev. Letft. 112, 091303 (2014)
Phys. Rev. Lett. 116, 161301 (2016)
Phys. Rev. Lett. 116, 161302 (2016)

Phys. Rev. D 93, 072009 (2016)




Dark-matter results from 332 new live days of LUX data

LUX timeline

Translation of confusing run names

Run03: Three

2008: LUX funded RunO1: systems test with GAr

(DOE+NSF) Run02: technical surface run (Xe) sl o c
2013 (Apr): . ;i live underground
Commissioning RunO4: A 1-year /
complete 2014 (Sep): 332-day 332 live-day run

run started!
2016 (May): Run

finished Not over:
analyses!
2016 (July): 332
2014 (Mar): First results days DM results
(3 months) reported presented
2015 (Dec.) 3-month run
- reanalysis posted. original
2012 (Jul): Underground |~ Published 2016 (Apr). sensifivity
lab complete, LUX i e goals were
moves UG exceeded

33

A. Manalaysay LUX: IDM2016 S PR



Drift time [us]

Electric Field Uniformity
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Fiducial Calculdfion

0 0
102
50 50
100 100
101
150 150 P
% [=]
E‘. Eaaa st odl E g
— 0
Y 200 E 200 «
= = 100 &
& & 2
8 250} a 250 g
Z.
300 300
1101
350 [ 2014-09-03 | 350
400 | 400
! ! | - - L I 1 - 10.2
0 5 10 15 20 25 0 5 10 15 20 25

S2 Radius at Liquid Surface [cm] S2 Radius at Liquid Surface [cm]




Details of the WIMP search

the key dates

Original proposal
objectives met; how often

o]] September 2014 —3 May 2016 does that happene!
o Live time (332.0 days)

®

®
®
®

Time-bin1 (2014.09.09-2014.
Time-bin2 (2015.01.01-2015.
Time-bin3 (2015.04.01-2015.
Time-bin4 (2015.10.01-2016.

¢ Fiducial mass:

®

@
O]
O]

Time-bin 1:
Time-bin 2:
Time-bin 3:
Time-bin 4:

1054 + 53 kg
107.2 + 5.4
99.2+ 5.0
98.4 + 4.9

Initial goal (2008): 300 live-days

12.31): 46.8 live-d (31.8 d not salted)
03.31): 46.7 Lots of tritium

and DD
09.30): 91.6 calibrations in

05.03): 146.9 there as well
Initial goal (2008): 100 kg

Initial goal (2008): 30,000 kg-days

; (33500 + 1700) kg days



Combined S1 Cut Efficiency
o o o
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o
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Ll — Mean Efficiency (98.5%)

6 ¢ Electron Recoil (CH;T)
$4¢ Nuclear Recoil (DD)
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S1 Raw Area (phd)
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e <
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S2 Detection Efficiency
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S

0.2F J— Combined SZ Cut I'Efficie‘ncv
¢ Gas-event cut
¢ Merged S2 cut
4 S2 hit-pattern cut
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300 400 107 xX10° 10*
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b
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S
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Capftion: Efficiencies for NR event detection, estimated us-
ing simulation with parameters tuned to D-D calibration. In
descending order of efficiency—red: detection of an S2 (>2
electrons emitted); green: detection of an S1 (>2 PMTs de-
tecting photons); blue: detection of both an S1 and an S2;
black: detection passing analysis selection criteria, includ-
ing thresholds in SI1 and raw S2 size. Solid curves indicate
exposure-weighted means, the variation in time and detector
position are indicated for the final efficiency.




Pathologies
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Dark-matter results from 332 new live days of LUX data

Position corrections

* Size of the S1 depends on the location of the
event (due to geometrical light collection), and
S2 (due to electronegative impurities)

e Normally, one develops a geometrical
correction factor by flat fielding a mono-
energetic source.

* However, a spatially varying E-field ALSO
affects S1 and S2 sizes, but differently for Gatel =====mmmmmmmmeeeeeeeeee
every particle type and energy.

Anode| === =======nm e

. . . . S1 larger for
1F- oo o e oo apha fight 1 events lower in
o o
0.9 i 1
NR, light the detector
0.8 o
=) s& ,'——"’_—_____-
g o7} 4 %R charge 1 S2 larger for
W o, " (122 keV) i i
3 W ) events higher in
5 ]
S, o8f ‘., the detector
o oa4f/ $ ¢ ¢ 4 ]
& / ER, light 1 v
0.3} 1
3 (122 keV)
0olmpod @ @ o o ] Cathode| ================-===-==--=------=-
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Dark-matter results from 332 new live days of LUX data

Position corrections

® Qur strategy is:

» Disentangle position effects from field

effects.

» Apply a correction to account for position

effects only.

e 83mKr has two decays close in time. The
ratio of the first-to-second S1 pulse area
depends on field alone. This allows us to
measure the component of variation due to

applied field alone.
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Dark-matter results from 332 new live days of LUX data

Radiogenic backgrounds

*Backgrounds from
radioisotol}:es in detector

materials
since the previous LUX

results.
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eIn the first LUX results, there
was a residual amount of 127Xe
among our stock of Xe, and
was included as a background

component.

eHere, the 127Xe has decayed

away and we neglect its
contribution (>20 half lives at

the beginning of this data set).




