ATLAS EXPERIMENT

Charged particle spectra in p+Pb collisions

Evgeny Shulga for the ATLAS Collaboration Department of "Elementary Particle Physics" N40, National Research Nuclear University "MEPhI", 115409, Russia, Moscow, Kashirskoe highway, 31

The ATLAS Detector

• Inner Detector $|\eta| < 2.5$

Charged hadrons in Pb+Pb [2]

• R_{AA} shows strong p_T dependence • R_{AA} decreases with higher p_{T} reaching a minimum at $p_{T} \approx 7$ GeV, where the charged-particle suppression is the strongest • R_{AA} shows good agreement with other experiments

Nuclear modification measurements at RHIC [1]

- why to study charged particle spectra?
 - to understand properties of hot dense matter created in HI collisions (Pb+Pb) and contribution of "cold" effects (p+Pb)
 - to understand the mechanism of energy loss of partons
- nuclear modification factor:

$$R_{pPb}(p_{\rm T}, y^{\star}) = \frac{1}{\langle T_{\rm Pb} \rangle} \frac{1/N_{\rm evt} \, \mathrm{d}^2 N_{pPb}/\mathrm{d}y^{\star} \mathrm{d}p_{\rm T}}{\mathrm{d}^2 \sigma_{pp}/\mathrm{d}y^{\star} \mathrm{d}p_{\rm T}} \, d^2 \sigma_{pp}/\mathrm{d}y^{\star} \mathrm{d}p_{\rm T}$$

Reference pp spectrum

Interpolation to 5.02 TeV with $ln(\sqrt{s})$

• High p_T charged particle spectra obtained

Nuclear modification measurements at the LHC

• In case of no nuclear effects R_{pPb} should not differ from unity at high p_{T}

• ALICE results do not support CMS @ high p_T using constructed ¹/_m 1.3 reference pp spectra

• p+Pb 2013 ATLAS data allow to check high p_T CMS results

from pp collision data

pp data at $\sqrt{s} = 5.02$ TeV were recorded in 2015 with a total luminosity of 25 pb⁻¹

The jet triggers used an anti-kt jet algorithm with a radius parameter of R = 0.4 and various thresholds [3]

Tracks in events recorded by jet triggers are required to be matched to a jet within $\Delta R^2 = \Delta \eta^2 + \Delta \phi^2 < 0.16$ and have $p_T \leq 1.3 \times p^{jet}_T$

The jet trigger with the lowest threshold becomes fully efficient at $p^{jet}_{T} = 26 \text{ GeV}$

Results [4], [5]

Lower p_T with interpolated pp reference:

- Nuclear effects are still present at the "peak" and lower p_T region
- Strong rapidity & centrality dependence of the particle production
- Glauber and GGCF models provide different interpretations •
- Higher p_{T} with pp reference:
- The most central interval 0–10% shows an increase toward lower p_{T} , the peripheral interval shows a decrease
- High $p_T R_{pPb}$ does not show significant deviation from unity in the centrality interval 0–90% for any transverse momentum

References

[1] STAR Collaboration, Nuclear Physics A 757 (2005) 102-183 . [3] ATLAS Collaboration, Phys. Lett. B719 (2013) 220–241. [2] ATLAS Collaboration, JHEP09 (2015) 050. [4] ATLAS Collaboration, arXiv:1605.06436.

[5] ATLAS Collaboration, ATLAS-COM-CONF-2016-114.