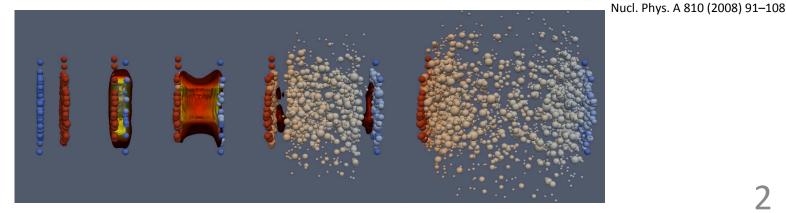


Long-range correlations in ALICE at the LHC

Igor Altsybeev St.Petersburg State University (for the ALICE Collaboration)

> ICPPA-2016 October 13, 2016

What are the sources of long-range correlations?


Long-range correlations (LRC)

– correlations between particles separated by pseudorapidity gap

Typically: $|\Delta \eta| > 1.0 \rightarrow$ suppress contribution from resonances and (mini) jets

- LRC can be created only at early stages of the collision
 - geometry, interactions between strings
- can be modified by medium and final state interactions
 - hydrodynamic expansion
 - energy loss in medium
 - conservation laws

Pb-Pb, p-Pb and pp collisions are under investigation at the LHC.

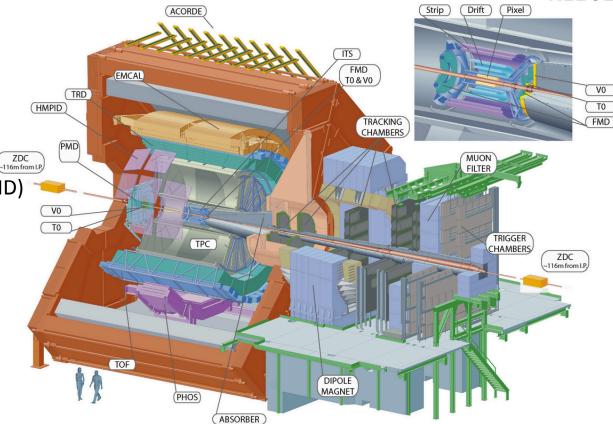
detection

freeze ou

latest correlatio

A.Dumitru et al.

ALICE experimental setup

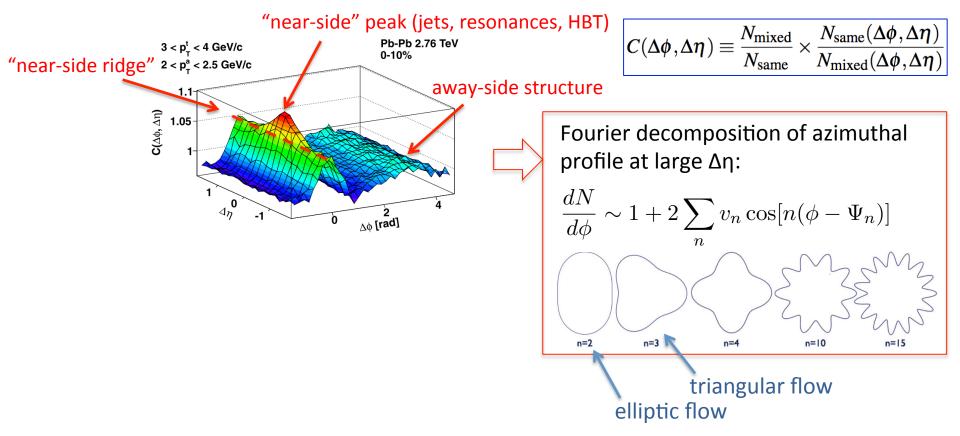

Inner Tracking System (ITS) (-0.9<η<0.9) Tracking + triggering

Time Projection Chamber (TPC)(-0.8<η<0.8)</td>Tracking + particle identification (PID)

Time Of Flight (TOF) (-0.8<η<0.8) PID

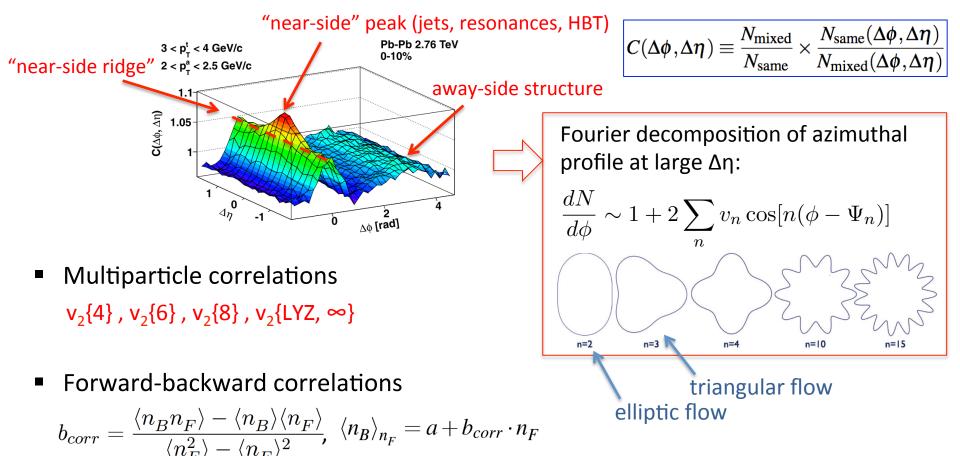
VZERO detector Two forward scintillator arrays (-3.7<η<-1.7, 2.8<η<5.1) centrality + triggering

Muon Spectrometer Tracking chambers (-4<η<-2.5) Trigger chambers



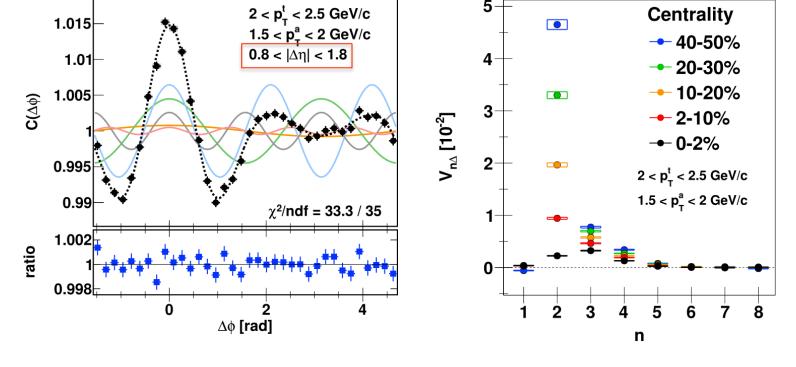
- Tracking: ITS+TPC (p_T > 0.2 GeV/c)
- Particle identification: ITS+TPC+TOF
- Centrality estimators: VZERO, ZDC

How do we extract information about long-range correlations?


Two-particle correlations with pseudorapidity gap

How do we extract information about long-range correlations?

Two-particle correlations with pseudorapidity gap

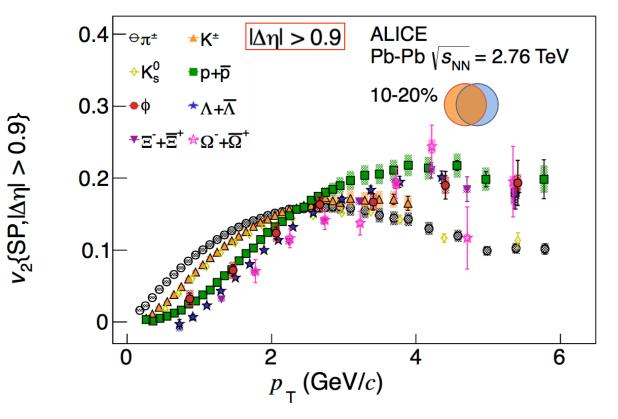


In this talk – some experimental highlights on LRC from ALICE.

Harmonic decomposition of long-range two-particle angular correlations

- shape of the overlap region \rightarrow large elliptic flow v₂, non-zero v₄
- fluctuations of the initial energy density profile \rightarrow affect v₂, produce v₃, ...

Most central (0-2%) Pb-Pb collisions at 2.76 TeV:

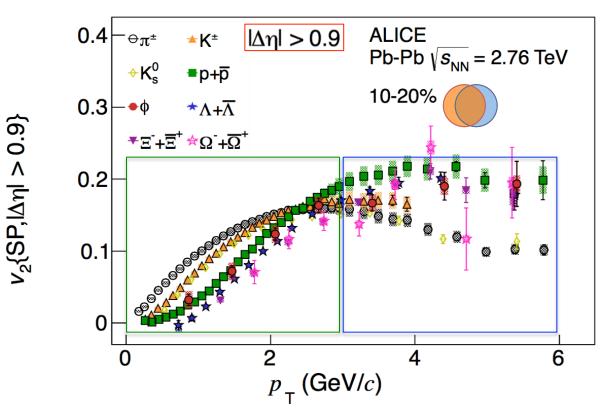


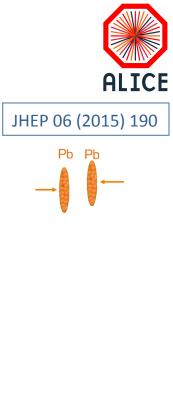
"Double hump" structure – due to larger v_3 relative to v_2 in most central collisions.

ALICE

Phys Lett B 708 (2012) 249-264

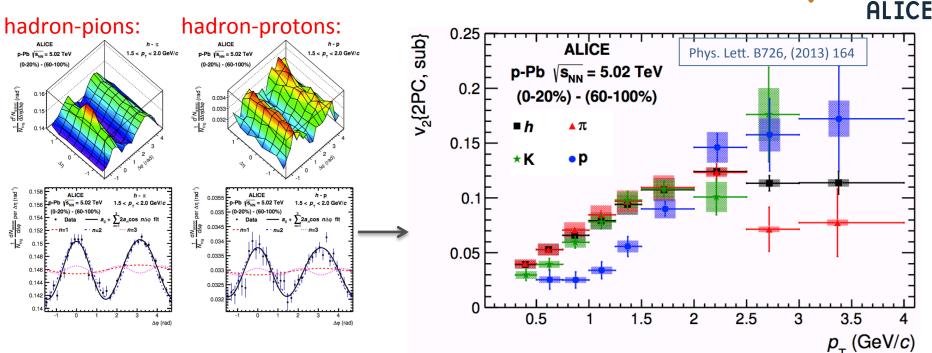
v_2 for identified particles versus p_T



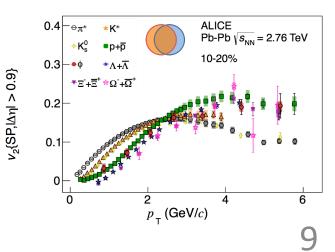


v_2 for π , K^{\pm} , p, K^0_{s} , Λ , Ξ and Ω :

- Mass ordering observed for many species
- Stronger in most central collisions \rightarrow stronger radial flow
- Crossing between proton and pion v_2 around $p_T \sim 3 \text{ GeV}/c$
- Baryon/meson splitting persists out to high p_T


v_2 for identified particles versus p_T

- Mass ordering at low p_T ($p_T < 3 \text{ GeV}/c$): interplay between elliptic and radial flow
- Intermediate p_T (3 < p_T < 6 GeV/c): grouping based on type? (mesons/baryons)
 - puzzling behaviour of ϕ -meson

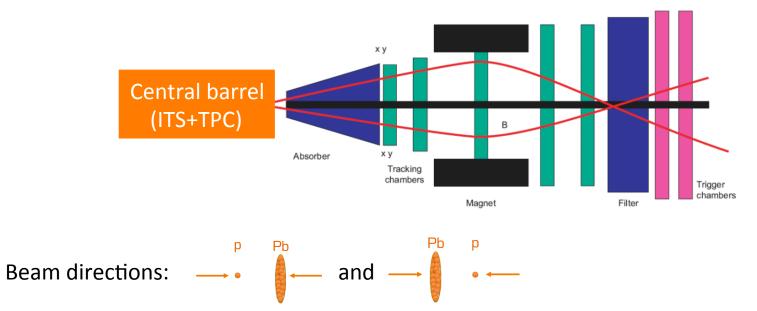

p-Pb also flows?

- v₂ was extracted from two-particle correlations after *subtraction* of correlations in low multiplicity events
- In high-multiplicity p–Pb collisions:
 - $p_T < 2 \text{ GeV}/c$: v_2 is larger for π than for protons
 - \circ at p_T 3–4 GeV/*c*, v_2 for protons is higher than for π

Qualitatively similar picture in p-Pb as in Pb-Pb

→ Flow not only in A-A but also in smaller systems?

Ph


р

"Forward-central" two-particle correlations in p-Pb at √s_{NN}=5.02 TeV

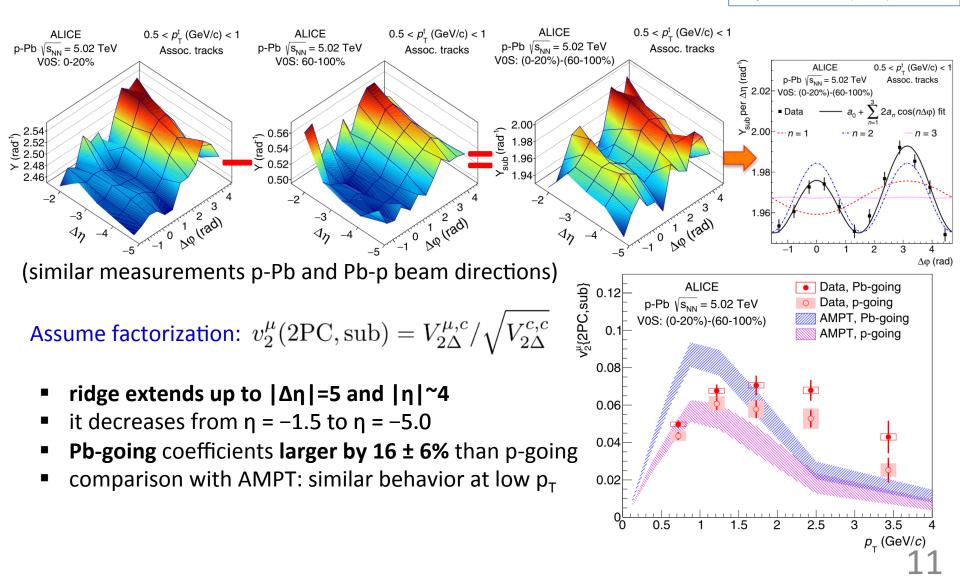
Further insight into the production mechanism of long-range correlation structures may be gained by studying their **η-dependence**.

Phys. Lett. B 753 (2016) 126-139

trigger particles = inclusive **muons**: $0.5 < p_T < 4 \text{ GeV}/c$ at $-4 < \eta < -2.5$ associated particles = charged particles in ITS+TPC: $|\eta| < 1$ at $0.5 < p_T < 4 \text{ GeV}/c$ (or "tracklets" in SPD: $p_T > 50 \text{ MeV}/c$)

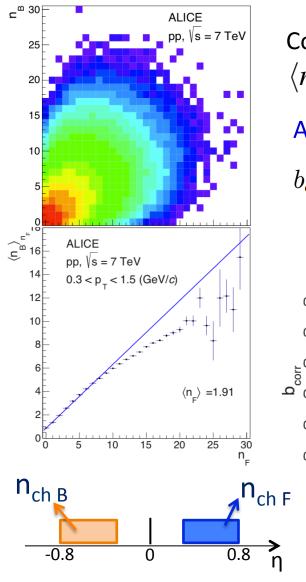
 Reconstructed muons mainly originate from weak decays of π, K and mesons from heavy flavor (HF) decays.

• Associated yield per trigger muon:
$$Y = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{assoc}}}{d\Delta \eta d\Delta \varphi} = \frac{S(\Delta \eta, \Delta \varphi)}{B(\Delta \eta, \Delta \varphi)}$$

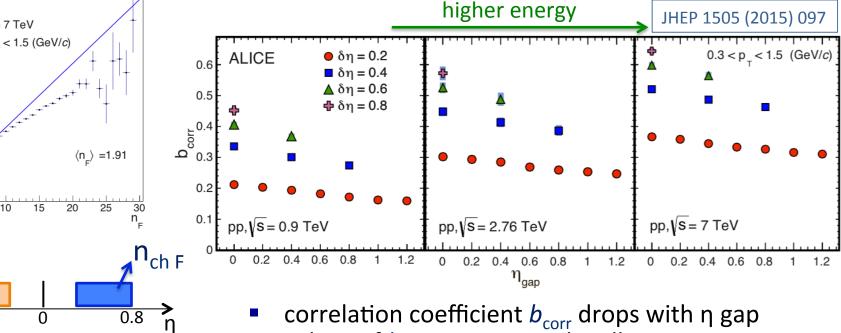


"Forward-central" two-particle correlations in p-Pb at Vs_{NN}=5.02 TeV

Further insight into the production mechanism of long-range correlation structures may be gained by studying their **η-dependence**.

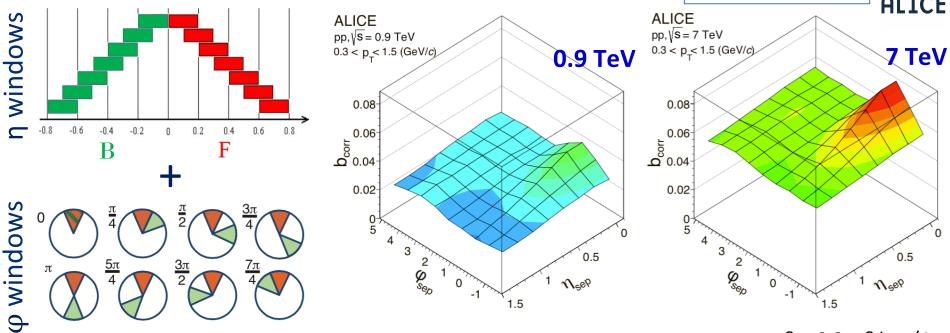

Phys. Lett. B 753 (2016) 126-139

5 Forward-Backward multiplicity correlations in P


р

Correlation strength is extracted by linear regression: $\langle n_B \rangle_{n_F} = a + \underline{b_{corr}} \cdot n_F$

Alternative definition:

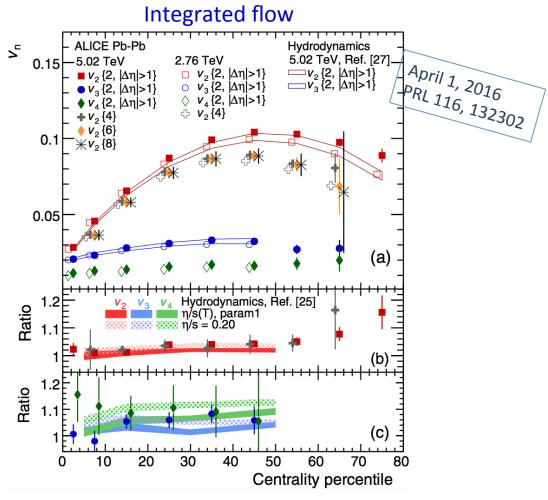

$$_{corr} = \frac{\langle n_B n_F \rangle - \langle n_B \rangle \langle n_F \rangle}{\langle n_F^2 \rangle - \langle n_F \rangle^2}$$

values of b_{corr} increase with collision energy

5 FB multiplicity correlations in separated η and φ windows

δη=0.2, δφ=π/4

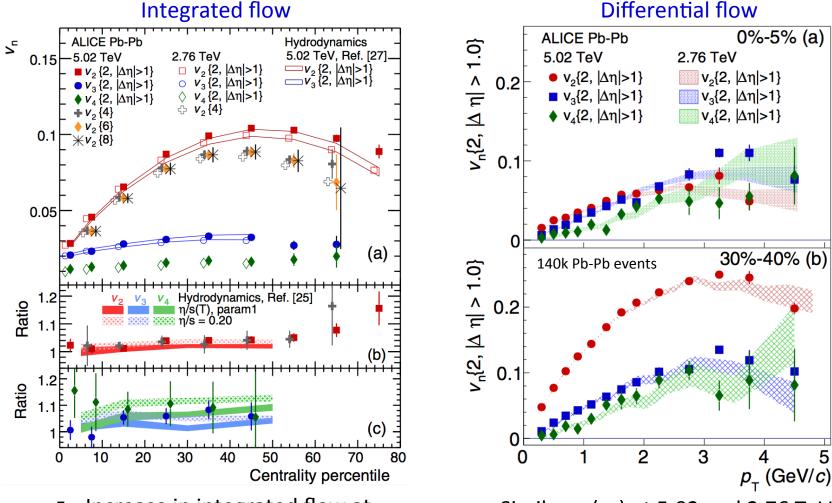
Extension of FB multiplicity correlations study into *azimuthal dimension* provides additional insight into particle production mechanisms


- short-range and long-range contributions are distinguishable
- non-zero plateau is observed and increases with the energy
- can be interpreted by simple model of independent particle emitters

V.V. Vechernin, *Nucl.Phys. A939 (2015) 21,* arXiv:1210.7588

6 Anisotropic Flow of Charged Particles in Pb-Pb at Vs_{NN}=5.02 TeV

Methods: two- and multiparticle cumulants: $v_n\{2, |\Delta \eta| > 1\}$, $v_n\{4\}$, $v_n\{6\}$, $v_n\{8\}$ **ALIC**



Increase in integrated flow at 5.02 *wrt* 2.76 TeV:
 v₂~ 3%, v₃~ 4%, v₄~ 10%

Anisotropic Flow of Charged Particles in Pb-Pb at Vs_{NN} =5.02 TeV

Methods: two- and multiparticle cumulants: $v_n\{2, |\Delta \eta| > 1\}$, $v_n\{4\}$, $v_n\{6\}$, $v_n\{8\}$

Increase in integrated flow at 5.02 wrt 2.76 TeV: $v_2 \sim 3\%$, $v_3 \sim 4\%$, $v_4 \sim 10\%$

6

Similar $v_n(p_T)$ at 5.02 and 2.76 TeV \rightarrow Growth of integrated flow is mostly due to increase in $< p_{\tau} >$

Summary

Long-range correlations are being studied at ALICE in pp, p-Pb, Pb-Pb by several analysis methods.

- Anisotropic flow in Pb-Pb with large ∆η: clear mass ordering at low p_T<2 GeV/c
 → consistent with the picture of hydrodynamic expansion of the medium
- **p-Pb** collisions: similar features for v₂ and v₃ as in Pb-Pb
 → flow in small systems?
- Muon-hadron correlations in p-Pb: long-range double ridge up to Δη≈ 5
- Forward-backward correlations in **pp**: sensitivity to fluctuations in number and properties of particle sources (strings)
- Very moderate increase of anisotropic integrated flow from 2.76 to 5.02 TeV

Summary

Long-range correlations are being studied at ALICE in pp, p-Pb, Pb-Pb by several analysis methods.

- Anisotropic flow in Pb-Pb with large Δη: clear mass ordering at low p_T<2 GeV/c
 → consistent with the picture of hydrodynamic expansion of the medium
- **p-Pb** collisions: similar features for v₂ and v₃ as in Pb-Pb
 → flow in small systems?
- Muon-hadron correlations in p-Pb: long-range double ridge up to Δη≈ 5
- Forward-backward correlations in **pp**: sensitivity to fluctuations in number and properties of particle sources (strings)
- Very moderate increase of anisotropic integrated flow from 2.76 to 5.02 TeV

Many interesting results are not covered here (two-particle correlations with PID, flow measurements with D-mesons and electrons, etc.)

- More studies of high-multiplicity pp and p-Pb collisions are foreseen.
- Upcoming results from LHC Run-2 (pp 13 TeV, Pb-Pb 5.02 TeV, p-Pb 5.02 and 8 TeV).

Summary

Long-range correlations are being studied at ALICE in pp, p-Pb, Pb-Pb by several analysis methods.

- Anisotropic flow in Pb-Pb with large Δη: clear mass ordering at low p_T<2 GeV/c
 → consistent with the picture of hydrodynamic expansion of the medium
- **p-Pb** collisions: similar features for v₂ and v₃ as in Pb-Pb
 → flow in small systems?
- Muon-hadron correlations in p-Pb: long-range double ridge up to Δη≈ 5
- Forward-backward correlations in **pp**: sensitivity to fluctuations in number and properties of particle sources (strings)
- Very moderate increase of anisotropic integrated flow from 2.76 to 5.02 TeV

Many interesting results are not covered here (two-particle correlations with PID, flow measurements with D-mesons and electrons, etc.)

- More studies of high-multiplicity pp and p-Pb collisions are foreseen.
- Upcoming results from LHC Run-2 (pp 13 TeV, Pb-Pb 5.02 TeV, p-Pb 5.02 and 8 TeV).

Thank you for your attention!