Recent results from T2K and future plans ICPPA 2016

Mathieu Lamoureux on behalf of the T2K collaboration

October 12, 2016

Introduction

Introduction

Open questions in neutrino physics

Discovery of neutrino oscillations in 1998 \Rightarrow neutrinos are massive.

Questions:

- What is the neutrino mass hierarchy? $\Delta m^2_{31} \gtrless 0$?
- Is θ_{23} mixing angle maximal? $\theta_{23} = 45^{\circ}, \ge 45^{\circ}$? (octant) hint for flavour symmetries?
- What are the precise values of mixing angles θ_{ij}?
 is DMNS matrix (11) unitary?

is PMNS matrix (U) unitary?

• CP violation in leptonic sector? $\delta \neq 0, \pi$?

hint for leptogenesis?

$$U = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \\ -s_{13}e^{ii} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -s_{13}e^{ii} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & s_{23} \end{pmatrix}$$

$$c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij},$$

$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$
normal hierarchy (NH) inverted hierarchy (IH)
$$m^2 \int dm_{atm}^2 \mu_2 dm_{atm}^2 \mu_2 dm_{atm}^2 \mu_3 dm_{atm}^2 \mu_4$$

Introduction

Measurements at a muon neutrino beam

Muon neutrino disappearance

$$\begin{split} & \mathcal{P}(\nu_{\mu} \rightarrow \nu_{\mu}) \sim 1 - \left(\cos^{4}\theta_{13}\sin^{2}2\theta_{23} + \sin^{2}2\theta_{13}\sin^{2}\theta_{23}\right)\sin^{2}\widehat{\Delta}_{31} \\ \Rightarrow \text{ sensitive to } \theta_{23} \text{ and } \Delta m_{31}^{2} \left(\widehat{\Delta}_{31} = \frac{\Delta m_{31}^{2}L}{4E}\right) \end{split}$$

Electron neutrino appearance (first order in $\alpha = |\Delta m_{21}^2 / \Delta m_{31}^2|$)

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &\sim \sin^{2} 2\theta_{13} &\times \sin^{2} \theta_{23} \times \frac{\sin^{2}[(1-x)\widehat{\Delta}_{31}]}{(1-x)^{2}} \\ &- \alpha \sin \delta &\times \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \times \sin \widehat{\Delta}_{31} \frac{\sin x \widehat{\Delta}_{31}}{x} \frac{\sin[(1-x)\widehat{\Delta}_{31}]}{1-x} \\ &+ \alpha \cos \delta &\times \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \times \cos \widehat{\Delta}_{31} \frac{\sin x \widehat{\Delta}_{31}}{x} \frac{\sin[(1-x)\widehat{\Delta}_{31}]}{1-x} \\ &\text{for } P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}), \text{ just replace } \delta \text{ by } -\delta \text{ and } x \text{ by } -x \end{split}$$

- Dependence on θ_{13} in leading term and θ_{23} octant ($\leq 45^{\circ}$)
- CP-violating phase $\delta \Rightarrow P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$
- Matter effect through $x = \frac{2\sqrt{2G_F}N_eE}{\Delta m_{31}^2}$: sensitivity to mass hierarchy ($x \leq 0$)

T2K experiment

T2K experiment

T2K analysis method

T2K experiment

T2K data so far

POT total: 1.510x1021

v-mode POT: 7.53×10²⁰ (49.86%)

Results with full "good-quality" data up to May 27

- ν -mode: 7.48 × 10²⁰ POT¹
- $\overline{\nu}$ -mode: 7.47 \times 10²⁰ POT

protons on target

$\overline{ u_{\mu}} - \overline{ u}_{\mu}$ disappearance

Neutrino mode

Anti-neutrino mode

Beam mode	Sample	Exp. Not Osc	Exp. $\delta_{CP} = 0$ (NH)	Observed
neutrino	μ -like	521.8	135.5	135
antineutrino	μ -like	184.8	64.1	66

2015 paper: [arXiv: 1502.01550], 10.1103/PhysRevD.91.072010

$\nu_e - \overline{\nu}_e$ appearance

Anti-neutrino mode

Beam mode	Sample	Exp. Not Osc	Exp. $\delta_{CP} = 0$ (NH)	Observed
neutrino	<i>e</i> -like	6.1	24.2	32
antineutrino	<i>e</i> -like	2.3	6.9	4

2015 paper: [arXiv: 1512.02495], 10.1103/PhysRevLett.116.181801

$heta_{23}$ and Δm^2_{32}

	Norma	al Hierarchy	Inverted Hierarchy		
Parameter	Best fit	$\pm 1\sigma$	Best fit	$\pm 1\sigma$	
$\sin^2 \theta_{23}$	0.532	[0.464; 0.578]	0.534	[0.468; 0.577]	
$\Delta m_{32}^2 (10^{-3} eV^2)$	2.545	[2.461; 2.626]	2.510	[2.427; 2.591]	

θ_{13} and δ_{CP}

 δ_{CP} effect¹

• T2K disfavors { $\delta_{CP} = 0$ } at 2σ { $\delta_{CP} = 0, \pi$ } at 90%

¹Expectations computed using sin² $\theta_{13} = 0.0217$, sin² $\theta_{23} = 0.528$, sin² $\theta_{12} = 0.846$, $\Delta m_{32}^2 (\Delta m_{13}^2) = 2.509 \times 10^{-3} eV^2/c^4$, $\Delta m_{21}^2 = 7.53 \times 10^{-5} eV^2/c^4$

Prospects

T2K II

- original T2K: expected to end around 2020 with 7.8×10^{21} POT
- T2K phase II: extends up to 2026 for 20×10^{21} POT
- J-PARC upgrade: beam power \nearrow 1.3 MW (currently \sim 400 kW)

Figure: Targeted scenario

[arXiv: 1607.08004]

Prospects

Physics potential of T2K-II

(b) Sensitivity for $\sin^2 \theta_{23} = 0.43$

- Sensitivity to CP violation up to 3σ with full T2K-II statistics
- Sensitivity to θ_{23} octant

Conclusion

Conclusion

- Since 2010, T2K has accumulated $\sim 1.5 \times 10^{21}$ POT, equally split in neutrino and anti-neutrino mode.
- Joint analysis across all modes $(\nu_{\mu}/\overline{\nu}_{\mu} \text{ disappearance}, \nu_{e}/\overline{\nu}_{e}$ appearance) gives leading results for θ_{23} and Δm_{32}^{2} .
- First constraints on CP violation: T2K data prefer $\delta_{CP} = -\frac{\pi}{2}$ and normal hierarchy.

T2K disfavors
$$\{\delta_{CP} = 0\}$$
 at 2σ
 $\{\delta_{CP} = 0, \pi\}$ (no CP violation) at 90% CL.

- Extension to T2K-II was proposed:
 - to achieve 20×10^{21} POT in 2026
 - to reach $> 3\sigma$ sensitivity to CP violation in leptonic sector

Neutrino beamline

- 30 GeV proton beam from J-PARC Main Ring (MR)
- Protons directed on a thick graphite target
- Pions and kaons from the interaction are focused by magnetic horns Two possible modes:
 - Forward horn current (FHC): π^+ and K^+ are collected
 - Reverse horn current (RHC): π^- and K^- are collected
- Decay volume (\sim 96 m long) in which mesons decay:
 - FHC: $\left|\pi^+ \rightarrow \mu^+ \nu_{\mu}\right| \Rightarrow \nu_{\mu}$ beam (so called neutrino mode)
 - RHC: $\left| \pi^- \rightarrow \mu^- \overline{\nu}_{\mu} \right| \Rightarrow \overline{\nu}_{\mu}$ beam (antineutrino mode)
- ν spectrum peaked at 600 MeV at 2.5° off-axis (towards SK)

Near detector complex at 280m

On-axis INGRID:

- iron and scintillator bars
- monitor neutrino beam direction and intensity

- Off-axis ND280:
 - scintillator and water targets
 - trackers and calorimeters
 - observe neutrinos before oscillation
 - tune flux, cross-sections cross-section uncertainties

Super-Kamiokande (SK)

- 295 km from neutrino production point
- 1 km underground in Kamioka mine
- 50 kton of pure water
- 13,000 photomultiplier tubes

Neutrino detection in SK

Charged particle \Rightarrow Cherenkov ring \Rightarrow Ring reconstruction \Rightarrow Ring PID

Off-axis beam

FIG. 1: Muon neutrino survival probability at 295 km and neutrino fluxes for different off-axis angles.

Near detector data and studies

Interactions in the near detector are separated in different categories:

- ν -mode (FGD1, FGD2): ν_{μ} CC0 π , CC1 π , CCother
- $\overline{\nu}$ -mode (FGD1, FGD2): $\overline{\nu}_{\mu}$ CC1trk, CCNtrk, ν_{μ} wrong sign

Figure: Left: Clear CC interaction ; Right: Deep inelastic event

Near detector constraints

Use near detector data to tune initial neutrino flux and parameters of neutrino interactions model.

Total $\delta N_{SK}/N_{SK}$					
Beam mode sample ND280 constrained W/o ND280					
neutrino	μ -like	5.2%	12.2%		
neutrino	e-like	6.9%	12.6%		
antineutrino	μ -like	5.2%	12.5%		
antineutrino	e-like	7.4%	14.1%		

Flux at SK

8

Super-Kamiokande:

• we assume the kinematics of a CCQE interaction

$$E_{\nu}^{rec} = \frac{m_{\rho}^2 - (m_n - E_b)^2 - m_l^2 + 2(m_n - E_b) E_l}{2(m_n - E_b - E_l + p_l \cos \theta_l)}$$

• $E_b = 27$ MeV is the binding energy of a nucleon inside ${}^{16}O$ • E_l , p_l , θ_l are the reconstructed lepton information

Event selection at Super-Kamiokande

Figure: Cut flow in CC selection

Systematic uncertainties

u_{μ} (FHC)

Source of uncertainty	$\delta N_{SK}/N_{SK}$
SKDet+FSI+SI	4.13%
SKDet only	3.86%
FSI+SI only	1.48%
Flux	3.60%
Flux (pre-fit)	7.63%
2p-2h (corr)	3.46%
2p-2h-bar (corr)	0.20%
NC other (uncorr)	0.78%
NC 1gamma (uncorr)	0.00%
XSec nue/numu (uncorr)	0.01%
XSec Tot (corr)	4.00%
XSec Tot	4.08%
XSec Tot (pre-fit)	7.73%
Flux+XSec (ND280 constrained)	2.79%
Flux+XSec (All)	2.90%
Flux+XSec+SKDet+FSI+SI	5.03%
Flux+XSec+SKDet+FSI+SI (pre-fit)	12.0%

$\overline{\nu}_{\mu}$ (RHC)

Comment of the states	SNI /NI
Source of uncertainty	ONSK/NSK
SKDet+FSI+SI	3.90%
SKDet only	3.31~%
FSI+SI only	2.06 %
Flux	3.77%
Flux (pre-fit)	7.10%
2p-2h (corr)	2.96%
2p-2h bar (corr)	1.81%
NC other (uncorr)	0.75%
NC 1gamma (uncorr)	0.00%
XSec nue/numu (uncorr)	0.00%
XSec Tot (corr)	4.13%
XSec Tot	4.19%
XSec Tot (pre-fit)	9.32%
Flux+XSec (ND280 constrained)	3.26%
Flux+XSec (All)	3.35%
Flux+XSec+SKDet+FSI+SI	5.22%
Flux+XSec+SKDet+FSI+SI (pre-fit)	12.5%

Systematic uncertainties

ν_e (FHC)

Source of uncertainty	$\delta N_{SK}/N_{SK}$
SKDet+FSI+SI	3.46%
SKDet only	2.39%
FSI+SI only	2.50%
Flux	3.64%
Flux (pre-fit)	8.94%
2p-2h (corr)	3.87%
2p-2h bar (corr)	0.05%
NC other (uncorr)	0.16%
NC 1gamma (uncorr)	1.44%
XSec nue/numu (uncorr)	2.65%
XSec Tot (corr)	4.13%
XSec Tot	5.12%
XSec Tot (pre-fit)	7.17%
Flux+XSec (ND280 constrained)	2.88%
Flux+XSec (All)	4.17%
Flux+XSec+SKDet+FSI+SI	5.41%
Flux+XSec+SKDet+FSI+SI (pre-fit)	11.9%

$\overline{\nu}_e$ (RHC)

Source of uncertainty	$\delta N_{SK}/N_{SK}$
SKDet+FSI+SI	3.95%
SKDet only	3.09%
FSI+SI only	2.46%
Flux	3.77%
Flux (pre-fit)	8.03%
2p-2h (corr)	2.97%
2p-2h bar (corr)	2.36%
NC other (uncorr)	0.33%
NC 1gamma (uncorr)	2.95%
XSec nue/numu (uncorr)	1.50%
XSec Tot (corr)	4.32%
XSec Tot	5.45%
XSec Tot (pre-fit)	10.12%
Flux+XSec (ND280 constrained)	3.22%
Flux+XSec	4.63%
Flux+XSec+SKDet+FSI+SI	6.19%
Flux+XSec+SKDet+FSI+SI (pre-fit)	13.7%

Normal hierarchy						
Beam mode	Sample	$\delta_{CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = +\pi/2$	$\delta_{CP} = \pi$	Observed
neutrino	μ -like	135.8	135.5	135.7	136.0	135
neutrino	e-like	28.7	24.2	19.6	24.1	32
antineutrino	μ -like	64.2	64.1	64.2	64.4	66
antineutrino	e-like	6.0	6.9	7.7	6.8	4
Inverted hierarchy						
Beam mode	Sample	$\delta_{CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = +\pi/2$	$\delta_{CP} = \pi$	Observed
neutrino	μ -like	135.1	135.3	135.0	134.8	135
neutrino	e-like	25.4	21.3	17.1	21.3	32
antineutrino	μ -like	63.8	64.0	63.8	63.7	66
antineutrino	e-like	6.5	7.4	8.4	7.4	4

 $\delta_{CP} \in [-3.16; -0.39]$ (Normal Hierarchy) $\delta_{CP} \in [-2.09; -0.74]$ (Inverted Hierarchy)

13