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Motivation and plan

@ Multidimensional theories: a great variety of geometries, topologies
and compactification schemes. Extra dimensions can become large
and observable in some part of space =- another physics.

@ A way to study such possible situations: a search for the
corresponding solutions of multidimensional Einstein equations.

@ We consider 6D manifolds My x M; x Mp; Mj: 2D Lorentzian;
each of My, M: either S? (2-sphere) or T? (2-torus).
Source of gravity: a minimally coupled (phantom) scalar field.

@ We select the possible asymptotic behaviors of the metric functions
compatible with the field equations. Their choice is rather narrow.

@ Two examples of wormhole solutions with the expected properties.
Our “end”: our 4D space xT? (small); “far end”: large T?.

@ Example 1: a massless scalar field (based on a well-known more
general solution). “Far end”: extra T? has a large constant size.

e Example 2: a nonzero potential V/(¢);
“far end”: 6D AdS, all spatial dimensions are infinite.
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Basic equations

2
. m
Action: S= 76 IRVAE) [R(i +2e48°B0ap0p0 — 2\/((15)}»

where: mg = 6D Planck mass, Rs = 6D Ricci scalar, g5 = det(gas),
€4 = 1 for a normal, canonical scalar field, e4 = —1 for a phantom one;
V(¢) = scalar field potential; A, B, ... =10,5.

Equations:  2:406¢ + dV/d¢ =0
RA=—Th=—Thp— L16aTE = 240" 000 + L V(9)02,
RA = 6D Ricci tensor, T4 = stress-energy tensor (SET) of ¢.

du?
A(x)

Metric: ds®> = A(x)dt? — — R(x)dQ? — P(x)dQ3,

x = "radial” coordinate:

dQ3,dQ3 = x-independent metrics on 2D manifolds of unit size;
R(x) = r?(x) = size of M (2-sphere or 2-torus);

P(x) = p?(x) = size of M, (2-sphere or 2-torus);

Scalar field: ¢ = ¢(x).
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Basic equations — 2

Which of M » belongs to our 4D space-time and which is “extra”?
Everything depends on their size.

SET: =070 5 _ w43
T T T3e TEo T8 LV()
TE— TH = 2e4A(x)¢2.

Symmetry of the problem = 4 independent equations (prime = d/dx):
1

RE=-T¢ = —5=(APRY = V(9), (1)
RI-RI=—T/+TY = "/r+p'/p=—e4¢"?, (2)
RI-RE=0 =  [P(AR — A'R)] = 2¢,P, (3)
RE-R{=0 =  [R(AP'— A'P)]' =22R. (4)

(e1 =1 & M; = sphere, 61 =0 < M = torus. The same for ¢5.)

Note: In Egs. (3) and (4) — only metric functions! 2 eqs for 3 unknowns.
If we know A(x), R(x), P(x), we find V(x) and ¢(x) from (1) and (2).
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Types of geometries

Eq.(2) = solutions with r > 0 and p > 0 in the whole range x € R
exist only with ¢4 = —1, i.e., a phantom field, since they require r'" >0
and p” > 0.

@ SS (double spherical) space-times: 1 = e, = 1. If spheres M are large
and M are small (or vice versa), there is static spherical symmetry in our
space-time and a spherical extra space.

Both spheres are large = 6D space-time, all dimensions are observable.

@ ST (spherical-toroidal) space-times: the case 1 =1, ¢, = 0 (or vice
versa). If M is large and M small, we have static spherical symmetry in
our space-time and a toroidal extra space. The opposite situation is also
possible as well as a total observable 6D geometry.

@ TT (double toroidal) space-times: if £; = ¢2 = 0, we have the same as
before but both M; and M are toroidal.

Our interest: finding configurations where x € R and there are different
asymptotic behaviors of R = r? and P = p? as x — +00.
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Possible asymptotic behavior

We check which kinds of asymptotics (4D or 6D flat, dS, AdS) are admitted by
the pure metric equations (3) and (4):

[P(AR' — A'R)] = 25:P  (3), [R(AP' — A'P)] = 25,R.  (4)

Example of asymptotic analysis. Consider an asymptotically flat 4D
spherically symmetric space-time with constant spherical extra dimensions.
This means €1 = ¢, = 1 and, without loss of generality (fin = const > 0),

A(x) — fin, R(x) ~x*, P(x)— fin (5)

as x — 0o. We substitute to (3) and (4) the expansions
_ A1 2 B P1
AX)=Ao+ ="+, R =x(1+0(1)), PH)=Po+=—+...,

so that R’ ~ x, A’ ~ x72 or even smaller, and the l.h.s. of (3) tends, in
general, to a nonzero constant, which agrees with P — fin on the r.h.s..
However, in (4) the expression in square brackets tends to a constant, hence its
derivative vanishes, while the r.h.s., equal to 2R, should behave as x2.
Thus the conditions (5) are incompatible with the field equations.

The same follows if consider x — —oo and/or exchange R(x) and P(x).
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Possible asymptotic behavior — 2

In the above manner we analyze different opportunities and obtain the table:

Asymptotic behavior | 6D geometries

No. Comments
A(x) R(x) P(x) | SS|ST |TT

0 | fin fin fin | - | - | £ [ M*xT°xT*

1 fin fin x? - - - none

2 | fin X fin | - | + | - M* x T?

3 fin X2 X2 + - — M®

4 X2 fin fin + - - dS, x §? x §?

5 X2 fin X2 + + - dSs x §?

6 x? x? fin + - - dSs x §?

7 x? x2 2 | x| £ | £ (A)dSs

Here: + (plus) means “possible”, — (minus) — “impossible”,

4+ — possible under special conditions on the parameters.
M stands for Minkowski; the comment “dS" means a de Sitter asymptotic with
A(x) ~ —x°, whereas an AdS behavior (A ~ x?) is impossible.

In particular, wormholes with M* x T2 on one or both ends are only possible
with ST geometry. Further on: two examples of such wormholes.
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Example 1: ST wormholes with a massless scalar

It is a special case of multidimensional solutions with a massless scalar
known for a long time (KB, 1995, KB, Ivashchuk and Melnikov, 1997,
etc.)

Metric and scalar field:

ds2 = di? — e [d2® + (2 + k)dQ3] — >™d03,

¢ = Cu, u:= %cot_1 (%Z) (6)

Here, k, n, C = integration constants, such that K +3m =2C2.
It is a spherically symmetric, twice asymptotically flat wormhole in
4D subspace My x M; (M; = S?) with a toroidal extra space M, = T?.

Note: z is another coordinate than x used in other parts of this presentation.
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Example 1 — continued

Size of T p=p_ =1 (z = —00) — "here",
p=ps=e"kp_ (z = +00) — at the “far end”.

Wormbhole throat: a minimum of r(z) = e~ 2™(z? +12)1/2, located at z = 2n,

its radius:
— 2 12
Fmin = \/ k* + 4n2 exp (fn cot lfn) (7)
k k
Suppose that the size of extra dimensions p_ on “our” end, z = —o0, is small

enough to be invisible by modern instruments, say,
p- =107 cm.

On the other end, it depends on the ratio n/k. B
Thus, to obtain p = p+ ~ 1 m, we should take n/k ~ 14.

The throat radius also depends on n and k. It is not too large if they take
modest values. Thus, for n/? = 14, we have rmin ~ 76Zp_. To obtain a large
enough throat for passing of a macroscopic body, say, fmin = 10 meters, one
has to suppose k ~ 10,
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Example 2: ST asymptotically AdS wormholes

With nonzero potentials V/(¢), in most cases solutions can be found only
numerically, with one exception (recall that e2 = 0 in the ST case!):

R(AP"— A'P) =K =const; K=0 = P=cA, c=const.
Eq. (3) then takes the form
[A3(R/A)] = 2A.

It is a single equation for two functions A(x) and R(x). It is solved by
quadratures if one specifies A(x): indeed, we then obtain

(g)/ - %/A(x)dx. (8)

A case of interest for us is that A — 1 as x — —oo (flat space xT?) and
A~ x? as x — +oo (AdSe).
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Example 2: continued

It is hard to find such A(x) leading to good analytic expressions of other
quantities. We therefore choose a piecewise smooth function A(x):

1, x <0, .
A(x) = { 143x2/2%, x>0 a = const > 0,

solve the equations separately for x < 0 and x > 0 and match the solutions at
x =0. At x < 0 we have R” = 2, hence we can take

R(x)=r*(x)=x>+b>, b=const >0 (x<0),

thus x = 0 is a throat of radius b. Also, without loss of generality,
V(x) =0, @(x) = arctan(x/b) (x <0).

At x > 0 we obtain

_ 3x? 2 x2(1 + 2X2/32)
R() = (1 * ?) {b (1+3x2/a2)% |’
30 12[b?x% + a*(2b% + x?)]

V(x) = a2 9b2x4 4 a*(b? 4 x2) + 2a2x2(30% + x?)
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Example 2: continued 2
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The scalar field ¢(x) (left) and the potential V(x) (right) in Example 2.

@ ¢'(x) and V(x) have jumps at x = 0, easily smoothed by small changes in
specifying A(x).

@ Since P(x) = cA(x) (c arbitrary), choosing ¢, we can make the extra
dimensions arbitrarily small on the left end;

@ on the right end we have 6D AdS;

@ the throat radius b is also arbitrary.
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Conclusion

KA.

In 6D GR, we have found examples of wormholes which lead from our
universe with small extra dimensions to a universe with large extra
dimensions where space-time is effectively 6-dimensional and should
contain quite unusual physics.

In our explicit examples the extra dimensions have the geometry of a
2-torus. Other geometries, topologies and numbers of dimensions are
possible and are of interest.

Other opportunities in the same framework can also be implemented, such
as, for example, a de Sitter asymptotic leading to space-times with
horizons and very probably to new cosmological models of “black
universe” type, where the cosmological expansion starts from a Killing
horizon instead of a singularity [KB and J. Fabris, 2006; S. Bolokhov, KB
and MS, 2012, etc.)

One more subject of a future study can be similar configurations in
multidimensional gravity with curvature-nonlinear actions [KB and S.
Rubin, 2005-2012; S. Rubin, 2016].

Of utmost interest are possible observational properties of this and other
kinds of multidimensional models of gravity.

Bronnikov and M.V. Skvortsova, Grav. Cosmol. 22 (4),,316-322 (2016).
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