

Direct photons and neutral mesons in pp, p-Pb and Pb-Pb collisions measured with the ALICE experiment

D.Peresunko NRC "Kurchatov instityte"

for the ALICE collaboration

Photon detection in ALICE

Photon Conversion Method (PCM)

- Good resolution at low p_{τ}
- Small conversion probability (~8.5%),
- Full azimuthal angle coverage, $|\eta| < 0.9$
- Small contamination of the photon sample

PHOS

- Excellent resolution at high p_{τ}
- High efficiency of the photon detection
- Limited acceptance (60°) $|\eta|$ <0.135

EMCAL

- Large acceptance (100°) $|\eta|$ <0.9
- Limited energy resolution

Updated DSS: "Global extraction of the parton-to-pion fragmentation functions at NLO accuracy in QCD", R.J. Hernández-Pinto, M. Epele, D. de Florian, R. Sassot, M. Stratmann, arXiv:1609.02455: *Agreement with ALICE pp* 7 *TeV data* : χ^2 /NDF= 32.1/11 3

Neutral pions in Pb-Pb $\frac{d^2N}{p_{T}dp_{T}dy}$ (GeV/c)⁻² B.Abelev et al., Eur.Phys.J. C74 (2014), 3108 10⁴ \bullet pp $\sqrt{s} = 2.76 \text{ TeV}$ - - Tsallis fit $R_{AA}(p_T) = \frac{(1/N_{\text{evt}}^{AA}) d^2 N_{\text{ch}}^{AA}/d\eta dp_T}{\langle N_{\text{coll}} \rangle (1/N_{\text{evt}}^{pp}) d^2 N_{\text{ch}}^{pp}/d\eta dp_T}$ 10^{3} -power law fit 10^{2} 10 0-5% Pb-Pb Vs. = 2.76 TeV 5-10% Pb-Pb Vs... = 2.76 TeV 10-20% Pb-Pb Vs. = 2.76 TeV TO ALICE CON GLV SS WHDG m \pi⁰ ALICE m π⁰ ALICE 3 0.5 10⁻¹ 10-2 20-40% Pb-Pb Vs_m = 2.76 TeV π⁰ ALICE 40-60% Pb-Pb Vs... = 2.76 TeV 60-80% Pb-Pb Vs. = 2.76 TeV π⁰ ALICE π⁰ ALICE 10⁻³ 10-4 0.5 10⁻⁵ 10 12 14 16 18 0 2 4 6 10 12 14 16 18 0 2 4 10 12 14 16 18 2 4 6 8 8 • 0- 5% Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV} \times 2^7$ p_ (GeV/c) p_ (GeV/c) 10⁻⁶ p_ (GeV/c) ALI-PUB-81817 **5-10% Pb-Pb** $\sqrt{s_{NN}} = 2.76 \text{ TeV} \times 2^5$ ★ 10-20% Pb-Pb √*S*_{NN} = 2.76 TeV × 2³ Neutral pions show suppression at large p_{τ} , 10⁻⁷ • 20-40% Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV $\times 2^2$ • 40-60% Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV} \times 2^1$ which corresponds to the energy loss by hard 10⁻⁸ • 60-80% Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV} \times 2^{\circ}$ parton. --- fits to Pb-Pb 10⁻⁹ Not all models are able to reproduce centrality 10 and p_{τ} dependence of the suppression. 5 *p*_{_} (GeV/*c*)

ALI-PUB-81690

Photon sources in AA collisions

Prompt direct photons dominate at high p_{τ}

=> measure prompt direct photons in pp collisions, normalize to the number of binary collisions and subtract: produce thermal direct photon spectrum

0.0

1.0

with flow of pions

2.0

 p_T (GeV)

Direct photon puzzle at RHIC:

3.0

Amount of direct photon flow is comparable

0.0

1.0

2.0

 p_T (GeV)

- Theory understimates direct photon yield
- Strongly underestimates amount of direct photon flow.

100

10-

10

 10^{-3}

10

10

0

40.60%

PHSD

2

 $p_T [\text{GeV}/c]$

3.0

Inclusive photon spectra in PHOS and PCM

Systematic uncertainties are p_{τ} correlated to large extend.

Detailed analysis shows that measurements are statistically consistent.

Direct photon double ratios in PHOS and PCM

$$R_{\gamma} \equiv \left. \frac{\gamma_{\rm incl}}{\pi_{\rm param}^0} \right/ \frac{\gamma_{\rm decay}}{\pi_{\rm param}^0} = \frac{\gamma_{\rm incl}}{\gamma_{\rm decay}}$$

Double ratios in PHOS and PCM show better agreement with each other than inclusive photon spectra because some systematic uncertanties cancel.

ALICE

Direct photon spectra in Pb-Pb collisions

Measured direct photon spectra agree with NLO QCD predictions scaled with N_{coll} , and exceed them at $p_T < 4$ GeV/c

Full theoretical predictions, including thermal direct photon predictions predict somewhat smaller yield, though touching systematic uncertanties.

Direct photon elliptic flow v_2

Similar to RHIC energy direct photon flow is underestimated by theoretical calculations especially at p_T <2 GeV/c approximately by factor 2-10.

Difference between data and theory predictions ~1-2 standard deviations: not very significant.

One should carefully treat all uncertainties

Conclusions

- Neutral meson spectra in pp collisions provide possibility to test QCD predictions and restrict PDF and FF for identified hadrons in wide kinematic region.
- Neutral meson spectra in p-Pb an Pb-Pb collisions provide possibility to test energy loss by hard partons in hot quark-gluon matter.
- Direct photon spectrum and flow provide possibility to study initial state of the AA collision and evolution of the hot matter at the very beginning of the collision.
- ALICE has collected a large amount of high quality data in Run2, so one can expect many new results.

Acknowledgements

This work was supported by Ministry of Education and Science of Russian Federation under contract №14.610.21.0003 from 20 October 2014.

Direct photon spectrum at RHIC energy

Prompt direct photon spectrum at pp collisions is well reproduced by QCD calculations

There is agreement with N_{col} scaled pp spectrum at high $p_T>4$ GeV/c and clear eccess over the expected prompt photon yield at $p_T<3$ GeV/c

Double ratio in pp collisions at 7 TeV

 $R_{NLO} = 1 + \frac{\gamma_{direct, NLO}}{\gamma_{decay}}$

3.8.10⁸ event were analyzed

Some unceratinties: : normalization, π^0 spectrum, Efficiency partially cancel

Measurement agree with no direct photon signal and with NLO QCD predictions