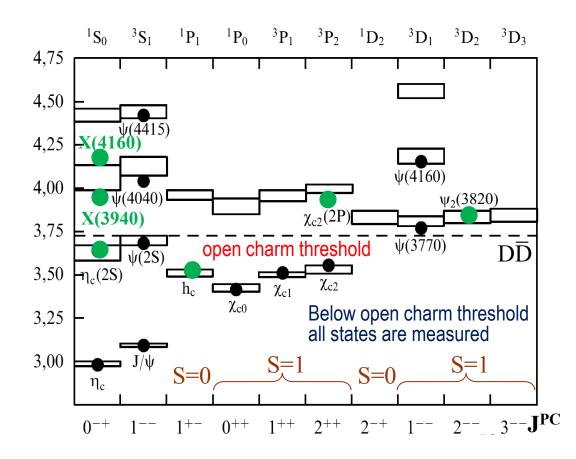
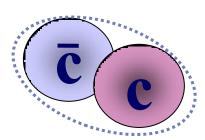


GALINA PAKHLOVA, LPI RAS, MEPHI, MIPT





CHARMONIUM: PRESENT AND FUTURE

ICPPA, October, 10, 2016, Moscow

Charmonium in standard quark model

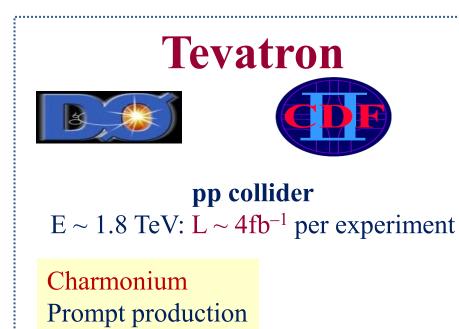
 $(n+1)^{(2S+1)}L_{J}$

- n radial quantum number
- S total spin of quarkantiquark
- L relative orbital ang. mom.
 - L = 0, 1, 2 ... corresponds to S, P, D...
- J = S + L
- $P = (-1)^{L+1}$ parity
- $C = (-1)^{L+S}$ charge conj.

1974 -1980 Discovery of 10 standard charmonium states
1980-2002 ... nothing
2002-2013 Discovery of 6 standard charmonium states

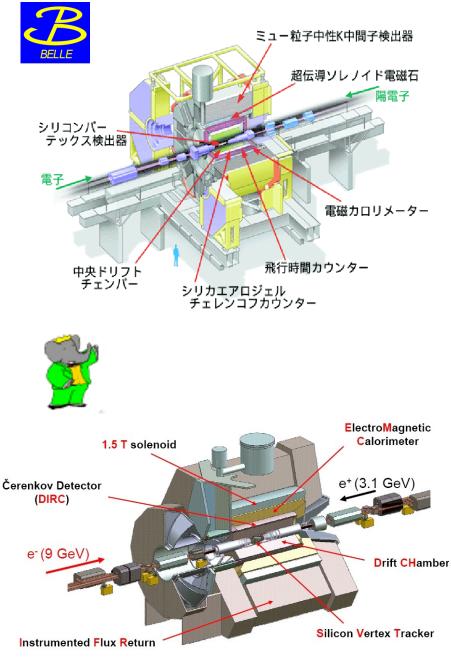
Charm factories

BESIII


Symmetric e⁺e⁻ collider

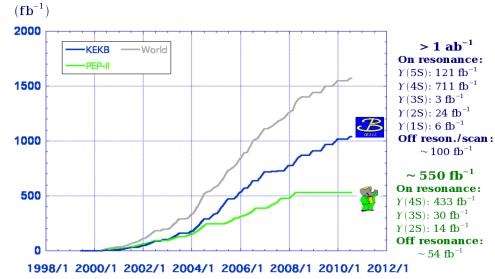
 $e^+e^- \rightarrow J/\psi, \psi(2S), \psi(3770), etc$ scan 2.0 - 4.6 GeV $L \sim 10^{33}/cm^2/s$ $E \sim 7 \text{ TeV: } L \sim 5 \text{fb}^{-1} \text{ per experiment}$ $E \sim 8 \text{ TeV: } L \sim 20 \text{fb}^{-1} \text{ per experiment}$

LHC

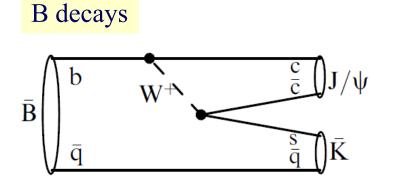

pp collider

LHCb $E \sim 7-8$ TeV: $L \sim 3$ fb⁻¹

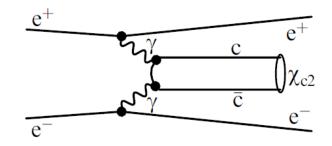
B meson decays


Charmonium Prompt production Beauty hadrons decays

B factories

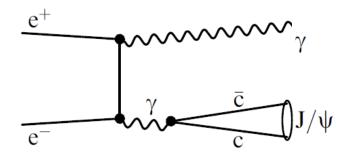

Belle: 8 GeV (e⁻) × 3.5 GeV (e⁺) designed luminosity: 10.0×10^{33} cm⁻²s⁻¹ achieved 21.2×10^{33} cm⁻²s⁻¹ (>2 times larger!)

Luminosity at B factories

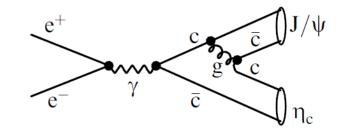


Belle completed data taking in 2010 to start SuperKEKB/Belle II upgrade

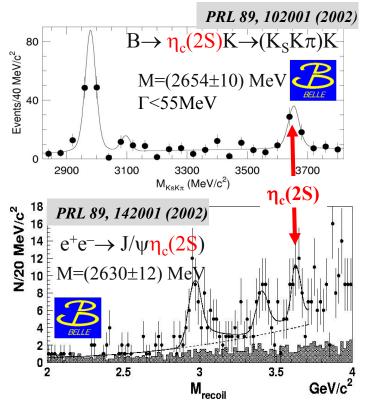
Charmonium (+like) production at B factories

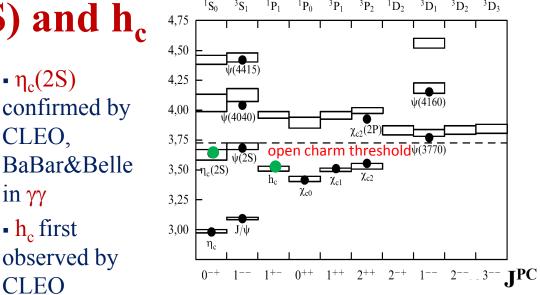

yy fusion

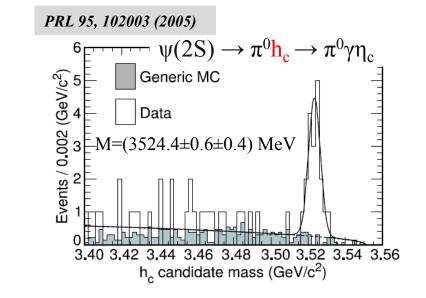
Any quantum numbers are possible, can be measured in angular analysis (Dalitz plot)


 $J^{PC} = 0^{\pm +}, 2^{\pm +}$

 e^+e^- annihilation with ISR

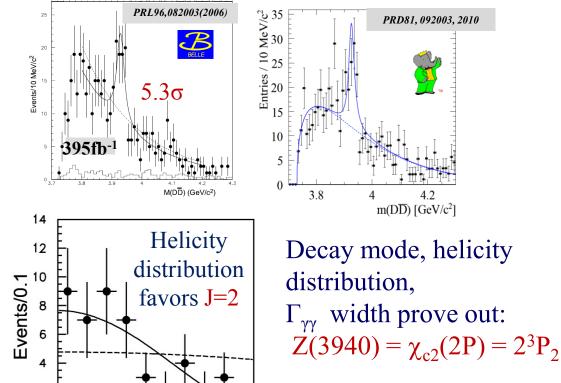

 $J^{PC} = 1^{--}$


double charmonium production


in association with J/ψ only $J^{PC} = 0^{\pm +}$ seen

Observation of $\eta_c(2S)$ **and** h_c

 $\eta_c(2S)$ and h_c : mass, total width, decays modes, $\gamma\gamma$ -width are in good agreement with the potential model expectations


Charmonium table below DD threshold is completed!

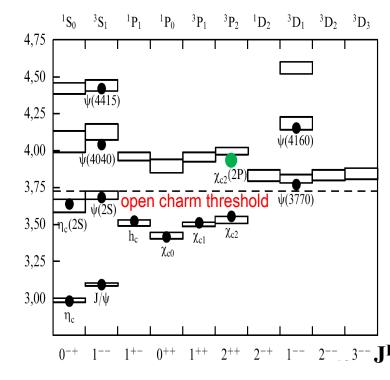
Future

 η_c : new decay modes, absolute BR measurements, improve mass, total width and $\Gamma_{\gamma\gamma}$

 h_c : search in three body B decays: B $\rightarrow h_c K \pi ...$

2 0

0

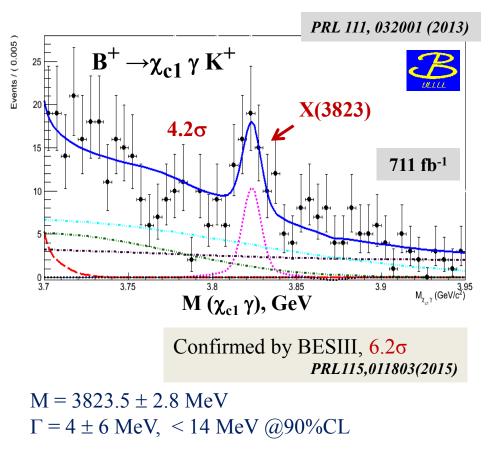

0.2

0.4

0.6

 $|\cos \theta^*|$

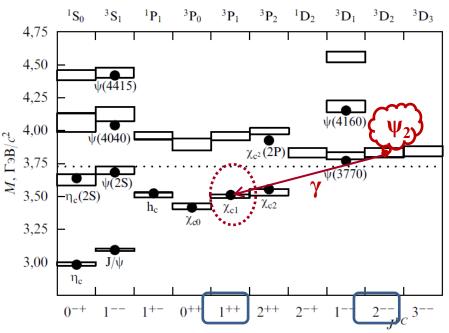
0.8

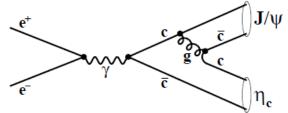


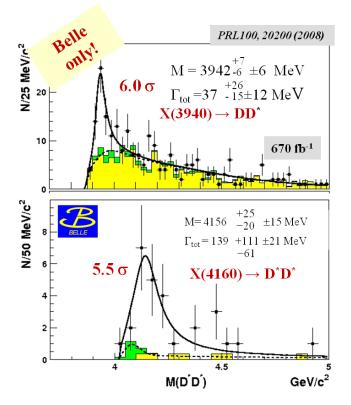
Mass is ~50-100 $M \ni B/c^2$ lighter than expected

Future

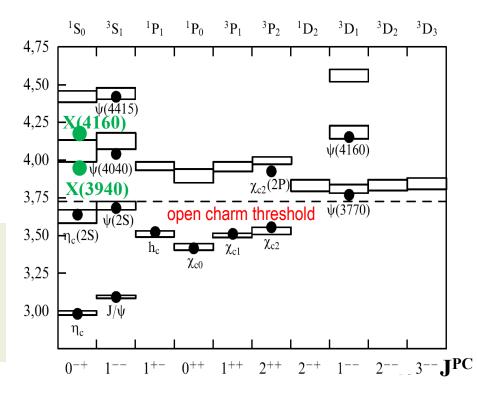
Improve parameters, search in multi-body B decays


Exp.	Process	Luminosity	Mass	Width	Spin	$\Gamma_{\gamma\gamma}(\chi_{c2}(2P)) \times$
						$\mathcal{B}(\chi_{c2}(2P) \to D\overline{D})$
		(fb^{-1})	(MeV/c^2)	(MeV)	J^{PC}	(keV)
Belle	$\gamma\gamma \to D\overline{D}$	395	$3929 \pm 5 \pm 2$	$29\pm10\pm2$	2^{++}	$0.18 \pm 0.05 \pm 0.03$
BABAR	$\gamma\gamma \to D\overline{D}$	384	$3926.7 \pm 2.7 \pm 1.1$	$21.3 \pm 6.8 \pm 3.6$	2^{++}	$0.24 \pm 0.05 \pm 0.04$

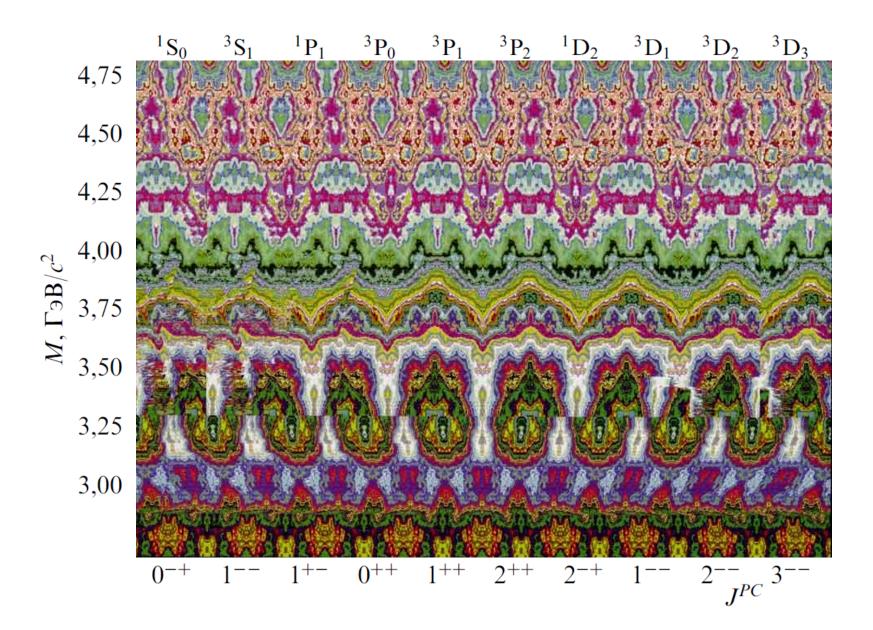

<u>Future</u>

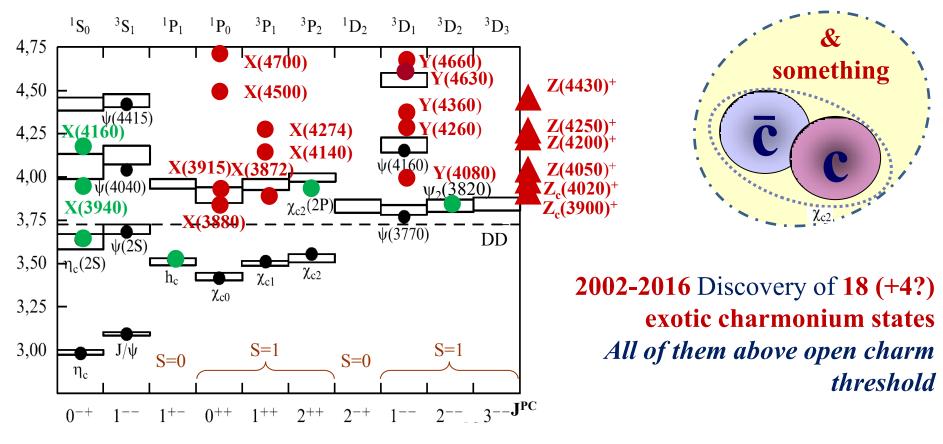

 \circ Critical prove at Belle II \circ To measure X(3823) decays to J/ $\psi \pi^+ \pi^$ and $\chi_{c2} \gamma$ final states and to compare with theoretical predictions for $\psi(1^3D_2)$ $X(3823) = \psi(1^{3}D_{2})$ $X(3823) \rightarrow \chi_{c1}\gamma \implies C = 1^{--} \qquad 1^{+-} \qquad 2^{--} \qquad 3^{--}$ $\Psi(3770) \qquad h_{c}(2P) \qquad \psi_{2} \qquad \psi_{3} \rightarrow DD$ decay to DD is forbidden due to unnatural spin-parity \rightarrow small Γ decay to $\chi_{c1}\gamma$ should be prominent (E1) $\Gamma(\chi_{c1}\gamma) \sim O(10 \text{KeV}) \text{ is typical for}$

charmonium


X(3940) & X(4160) in $e^+e^- \rightarrow J/\psi \ D^*D^{(*)}$

$J^{PC}=0^{-+}$ $X(3940) = 3^{1}S_{0} = \eta_{c}(3S)$ $X(4160) = 4^{1}S_{0} = \eta_{c}(4S)$ Decays to open charm like standard charmonium


X(3940)&*X*(4160): masses are ~100-150 (250-300)MeV lower than the masses predicted by the potential models


<u>Future</u>

Angular analysis for solid identification
Search in B decays

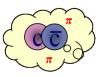
New charmoniumlike spectroscopy

Charmonium & Charmoniumlike states

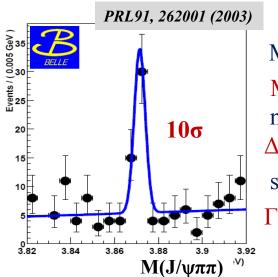
Multiquark states

<u>Tetraquark</u>

tightly bound four-quark state


Molecular state

two loosely bound charm mesons


Charmonium hybrids

States with excited gluonic degrees of freedom

<u>Hadro-charmonium</u>

Specific charmonium state "coated" by excited light-hadron matter

M_X close to D⁰D^{*0} threshold M = 3871.68 \pm 0.17 MeV not clear below or above: $\Delta m = -0.11 \pm 0.22$ MeV surprisingly narrow: $\Gamma_{tot} < 1.2$ MeV at 90% CL

$$J^{PC} = 1^{++}$$

finally
established

X(3872) Belle topcited:

1200+

First observed by Belle in $B \rightarrow K J/\psi \pi^+ \pi^-$ Confirmed: BaBar, LHCb, CMS, ATLAS, CDF

<u>Hadronic collisions</u>: produced mostly promptly; only 0.263±0.023±0.016 from B-decays (CMS)

Known decays	BR relative to J/ψρ mode	Comments
J/ψρ	1	isospin violation
J/ψω	0.8 ± 0.3	isospin violation
J/ψγ	0.21 ± 0.06	Belle&Babar good agreement
ψ(2S)γ	0.50 ± 0.15	Belle&Babar disagreement LHCb confirms BaBar
D^0D^{*0}	~10	dominant mode

X(3872) interpretations

Conventional charmonium χ_{c1} (2P) (J^{PC}=1⁺⁺)

Problems:

- $\Gamma(\chi_{c1} (2P) \rightarrow J/\psi\gamma)/\Gamma(\chi_{c1}(2P) \rightarrow J/\psi\pi\pi) \sim 30,$ measured < 0.2
- $\sim 100 \text{MeV}$ heavier then expected

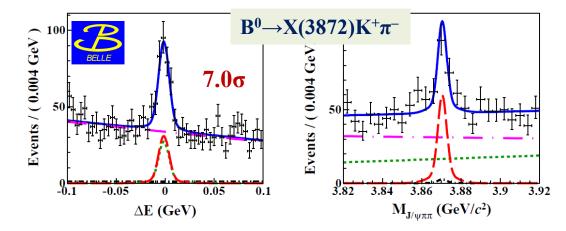
<u>Tetraquark (cq)(cq):</u>

+ 3 states (cu)(cu), (cd)(cu), (cd)(cd) with a few MeV mass splitting

Problems:

no evidence of neither neutral doublet nor charged partner yet

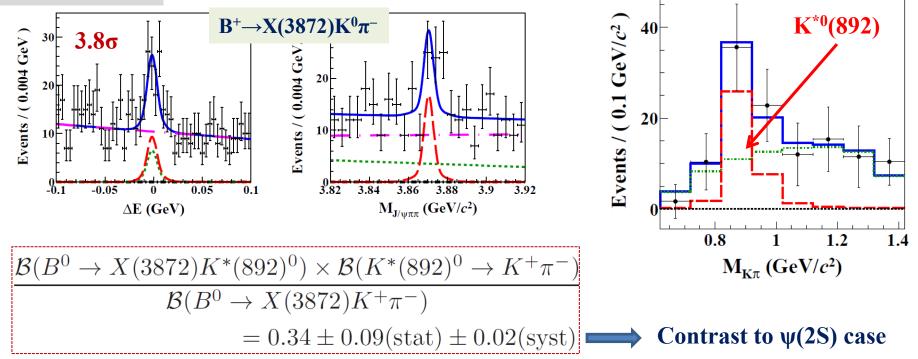
D⁰**D**^{*0} molecular state: (the most popular)

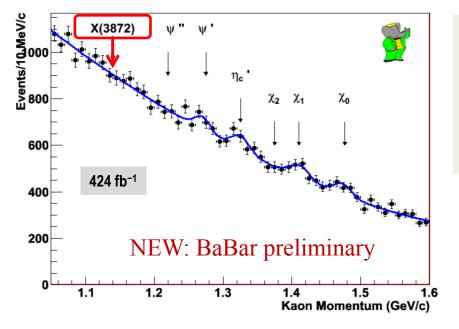

- $M_X \sim M_{D0} + M_{D^{*0}}$ is not accidental
- $J^{PC}=1^{++}(D^0D^{*0} \text{ in S-wave})$
- DD* decay
- Small rate for decay into $J/\psi\gamma$ is expected

Problems:

- too large $X(3872) \rightarrow \psi(2S)\gamma$
- too small binding energy: D⁰ and D^{*0} too far in space to be produced in high energy pp collisions

Possible solution:


Mixture of P-wave charmonium level $\chi_{c1}(2P)$ and S-wave DD^{*0} molecule


Observation of X(3872) in B→X(3872)Kπ

Decay mode	Y		· · · ·	$\mathcal{B}(B \to X(3872)K\pi) \times \mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)$
$B^0 \to X(3872)K^+\pi^-$	116 ± 19	15.99	7.0	$(7.9 \pm 1.3 \pm 0.4) \times 10^{-6}$
$B^+ \to X(3872)K^0\pi^+$	35 ± 10	10.31	3.7	$(10.6 \pm 3.0 \pm 0.9) \times 10^{-6}$

PRD91, 051101 (2015)

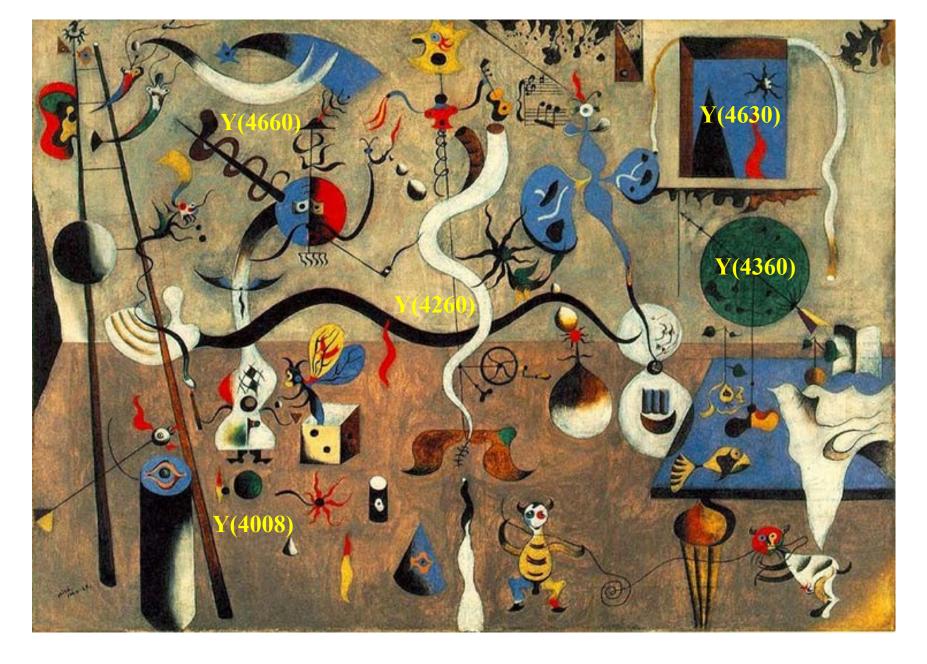
Measurements of absolute Br of B \rightarrow KX(3872)

Y(4S) → BB_{tag} KX → D π , ... full reconstruction Looking for recoil mass to (B_{tag}K) BaBar 2006: Br(B → KX(3872)) < 3.2 · 10⁻⁴ at 90% C.L Low limit on Br(X(3872) → J/ $\psi \pi^+\pi^- > 4.2\%$

Particle	Yield	Peak Position	Width	$BF(10^{-4})$
J/ψ	516 ± 67			$9.6 \pm 1.2 (sta) \pm 0.8 (sys)$
η_c	655 ± 77	2982 ± 5	$<\!\!43$	$13.3 \pm 1.8(\text{stat}) \pm 0.4(\text{sys}) \pm 0.3(\text{ref})$
χ_{c0}	218 ± 76			$4.4{\pm}0.9$
χ_{c1}	192 ± 35			$7.0 \pm 1.3 (\text{stat}) \pm 1.0 (\text{sys})$
χ_{c2}	0 ± 32			<1.2
η_c (2S)	283 ± 94	$3632 {\pm} 0.007$	$<\!33$	$6.0 \pm 2.1 (\text{stat}) \pm 0.4 (\text{sys})$
ψ'	293 ± 90			$6.2\pm2(\text{stat})\pm0.6(\text{sys})$
$\psi(3770)$	0 ± 49	BaBar pr	elimina	<2.0
X(3872)	75 ± 81	Dur		$1.4 \pm 1.5 \text{ or } < 4.4$

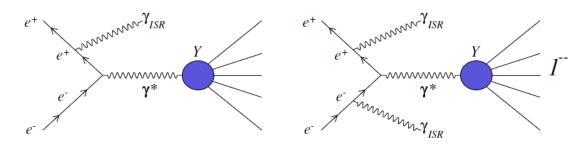
X(3872): future

Search for X(3872) partners decays	Comments
$\chi_{c1} \gamma$ $\chi_{c2} \gamma$	Forbidden by C-parity conservation C-odd partners: tetraquark, molecule UL : $< 1/4$ from J/ $\psi \pi^+\pi^-$
J/ψ η	C-odd partners: tetraquark UL : $< 1/2$ from J/ $\psi \pi^+\pi^-$
$ \eta_c \eta $ $ \eta_c \pi^0 $ $ \eta_c \pi^+ \pi^- $ $ \eta_c \omega $	Search for other X-like molecular states UL : $\sim J/\psi \pi^+\pi$


 \circ Detailed pattern of X(3872) to charmonium transitions (radiative and hadronic) with significantly improved accuracy

• Search for partners of X(3872) molecules with $J^{PC} = 0^{++}, 1^{+-}, 2^{++}...$

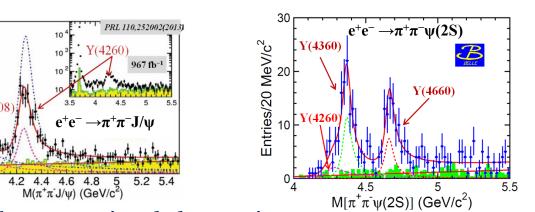
○ Measurements of absolute BR of $B \rightarrow KX(3872)$ with improved accuracy

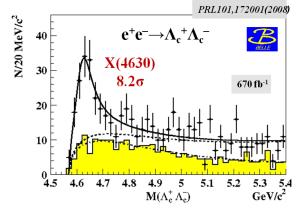

 \circ Measurements of line shape of X(3872) decaying to DD^{*} at threshold and to J/ $\psi \pi^+ \pi^$ to clarify nature of X(3872): virtual or bound state

 \circ Measurements of the total width of X(3872)

Exotic vector states

ISR measurements at B factories


- Fixed quantum numbers of final state $J^{PC} = 1^{--}$
- Study of charmonium(+like) final states from threshold in wide energy region
- Huge accumulated luminosity at B factories


• Limited statistics

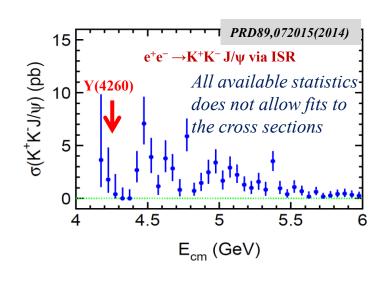
o strong electromagnetic suppression

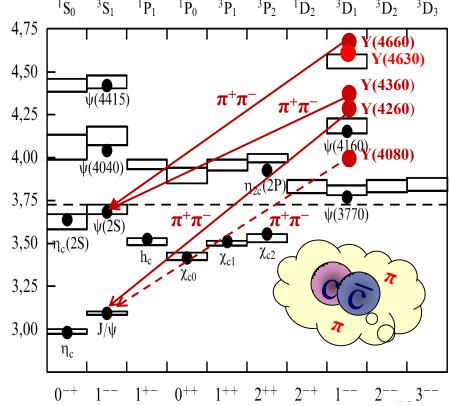
 \circ typical events topology: fast photon with small p_t

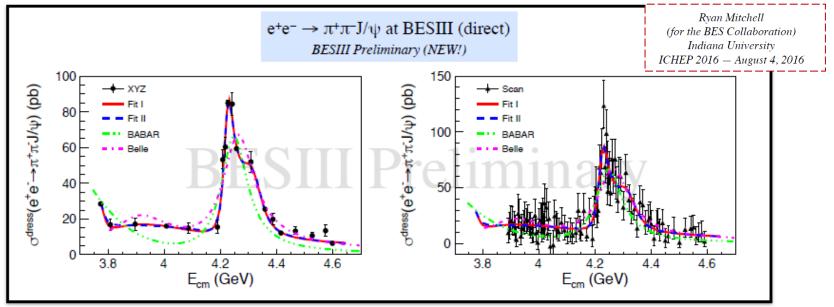
Y(4008)	3891 ± 42	$255 \pm 42 \ 1^{}$	$e^+e^- \rightarrow (\pi^+\pi^- J/\psi)$	Belle $[1046, 1094]$ (7.4)	2007	NC!
Y(4260)	4250 ± 9	$108 \pm 12 \ 1^{}$	$e^+e^- \to (\pi\pi J/\psi)$	BaBar [1104, 1105] (8), CLEO [1106, 1107] (11) Belle [1046, 1094] (15), BES III [1045] (np)	2005	Ok
			$e^+e^- \rightarrow (f_0(980)J/\psi)$	BaBar [1105] (np), Belle [1046] (np)	2012	Ok
			$e^+e^- \to (\pi^- Z_c(3900)^+)$	BES III [1045] (8), Belle [1046] (5.2)	2013	Ok
			$e^+e^- \rightarrow (\gamma X(3872))$	BES III [1108] (5.3)	2013	NC!
Y(4360)	4354 ± 11	78 ± 16 1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1110] (8), BaBar [1111] (np)	2007	Ok
X(4630) Y(4660)	$\begin{array}{c} 4634^{+9}_{-11} \\ 4665 \pm 10 \end{array}$	02	$\begin{array}{l} e^+e^- \rightarrow (\Lambda_c^+ \bar{\Lambda}_c^-) \\ e^+e^- \rightarrow (\pi^+ \pi^- \psi(2S)) \end{array}$	Belle [1116] (8.2) Belle [1110] (5.8), BaBar [1111] (5)	2007 2007	NC! Ok

Unlike conventional charmonium

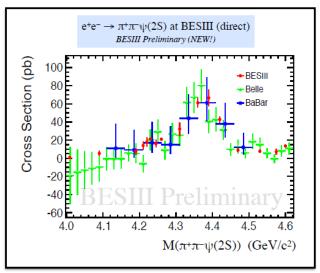
Entries/20 MeV/c²

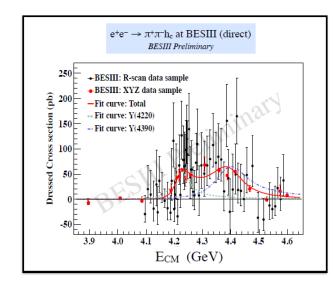

100


80

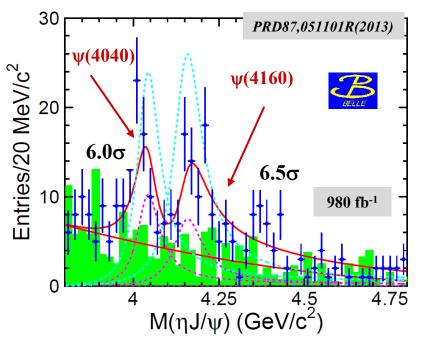

60

3.8

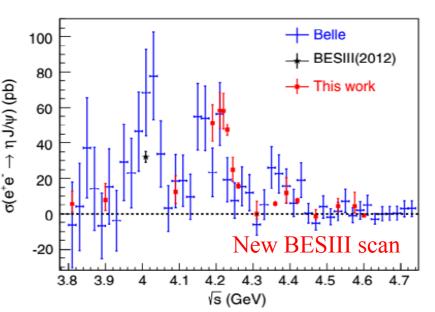

No room for Y states among 1^{--} charmonium $3^{3}S_{1} = \psi(4040); 2^{3}D_{1} = \psi(4160); 4^{3}S_{1} = \psi(4415);$ masses of predicted $3^{3}D_{1}(4520); 5^{3}S_{1}(4760); 4^{3}D_{1}(4810)$ are higher (lower) • Absence of open charm production ${}^{3}S_{1}$ ${}^{3}P_{1}$ ${}^{1}S_{0}$ ${}^{1}P_{1}$ ${}^{1}\mathbf{P}_{0}$ ${}^{3}P_{2} {}^{1}D_{2}$ ${}^{3}D_{1}$ $^{3}D_{2} - ^{3}D_{3}$ • Anomalous large partial width 4,75 (4660) $\Gamma(\Upsilon \rightarrow J/\psi \pi \pi) > 1 \text{ MeV}$ Y(4630) 4,50 • Only one decay channel per one Y state: Y(4360) $\pi^+\pi^ \psi(4415)$ $\pi^+\pi$ Y(4260) light charmonium + $\pi\pi$



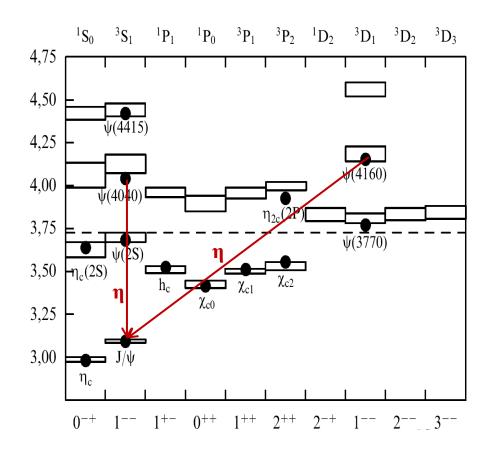
 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ cross section is inconsistent with a single pick of Y(4260) *Two peaks are favored over one peak by* 7σ



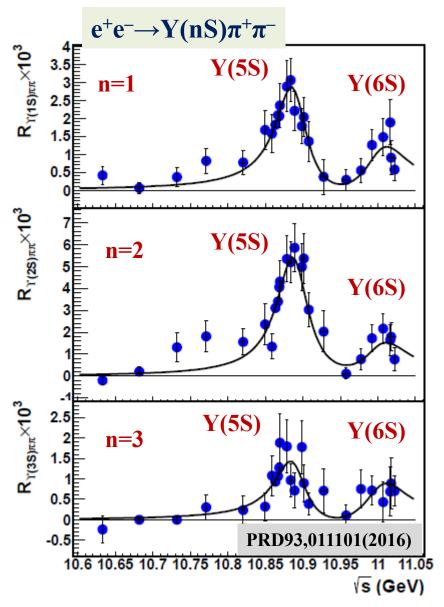
BESIII confirms lineshape of Y(4360) in $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ cross section


Y(4008) is not needed to describe BESIII data

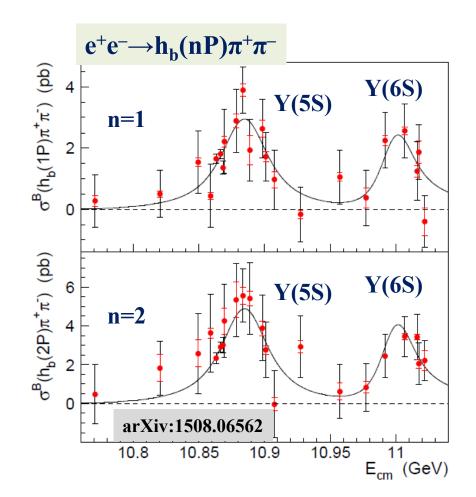
The $\pi^+\pi^-h_c$ shape is clearly different from $\pi^+\pi^-J/\psi$

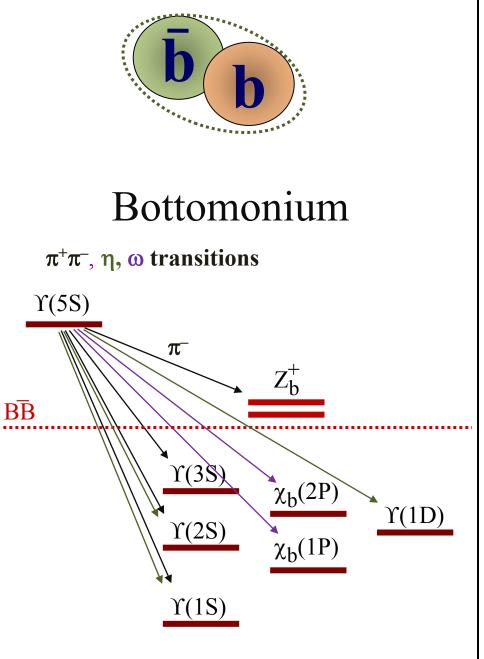


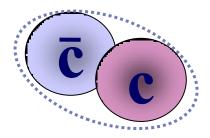
BESIII is in agreement with Belle: $\psi(4160) \rightarrow J/\psi\eta$ structure

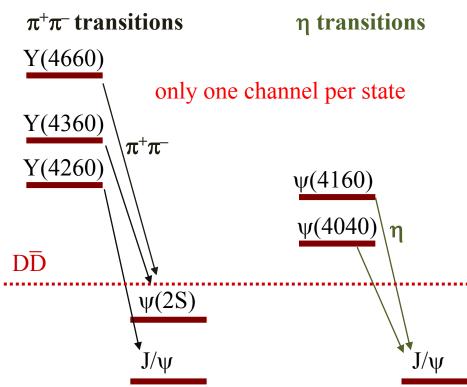

$e^+e^- \to J/\psi\eta$

o Peaks of ψ(4040) and ψ(4160)
o No sign of any Y state
o Γ (ψ(4040,4160) → J/ψη) ~ 1 MeV
o Anomalous transitions: common feature of all 1⁻⁻ states above threshold ?




Bottomonium cross sections




Only Y(5S) and Y(6S) peaks in all cross sections While for any charmoniumlike state only one decay mode

Charmonium

13 years after Y(4260) discovery nature of Y family remains unclear

More data more open questions:

- \circ Confirmation of Y(4008) found by Belle only
- \circ Confirmation of X(4630) found by Belle only
- \circ Absence of clear understanding of X(4630) nature

 \bigcirc X(4630) quantum numbers, mass and width are in agreement with Y(4660), too different decay modes: does not mean that X(4630) \equiv Y(4660)

• Lots of interpretations

 \circ Anomalous large transitions: common feature of all 1⁻⁻ states above threshold ?

 \circ Search for other final states: χ_{c1} , χ_{c2} , η_c , X(3872) + and/or other light hadrons

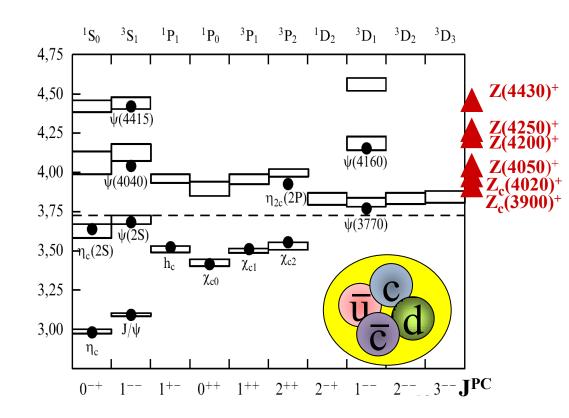
• Up to now only J/ψ , $\psi(2S) + \pi\pi$, η

• Charmonium via Bottomonium puzzle!

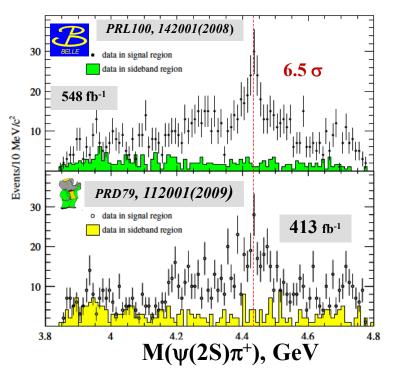
• Nature of **Y** states?

oMolecule, diquark-antidiquark, hadrocharmonium...

Charged charmoniumlike states


Charged Z_c^+ states cannot be conventional charmonium or hybrid

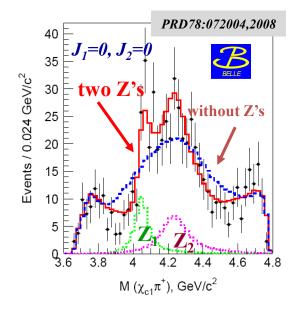
In **B** decays


 Four states found by Belle
 only Z(4430)⁺ is confirmed by LHCb

In <u>e⁺e⁻</u> annihilation

 \circ Two states are found by Belle \circ Z_c family with eight members charged and neutral is found by BESIII

$Z(4430)^+$	4458 ± 15	166^{+37}_{-32}	1+-	$B^0 \to K^-(\pi^+ \psi(2S))$	Belle [1112, 1113] (6.4), BaBar [1114] (2.4) LHCb [1115] (13.9)	2007	Ok
				$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	Belle $[1103]$ (4.0)	2014	NC!
$Z(4050)^+$	4051^{+24}_{-43}	82^{+51}_{-55}	??+	$\bar{B}^0 \to K^-(\pi^+ \chi_{c1})$	Belle [1096] (5.0), BaBar [1097] (1.1)	2008	NC!
$Z(4200)^+$	4196^{+35}_{-30}	370^{+99}_{-110}	1+-	$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	Belle [1103] (7.2)	2014	NC!
$Z(4250)^+$		177_{-72}^{+321}		$\bar{B}^0 \to K^-(\pi^+\chi_{c1})$	Belle $[1096]$ (5.0), BaBar $[1097]$ (2.0)	2008	NC!



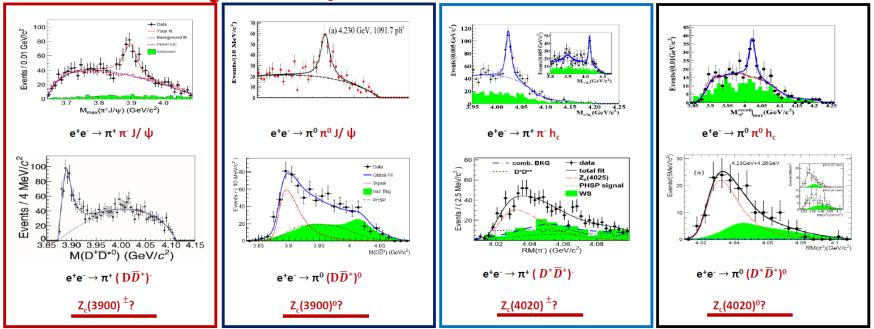
$B \rightarrow Z^+_{c}K^-$

Z(4430)⁺: three different analysis, J^P = 1⁺ \circ Fit to M($\psi(2S)\pi^+$) with K^{*}(890)&K^{*}(1430) veto \circ Dalitz analysis

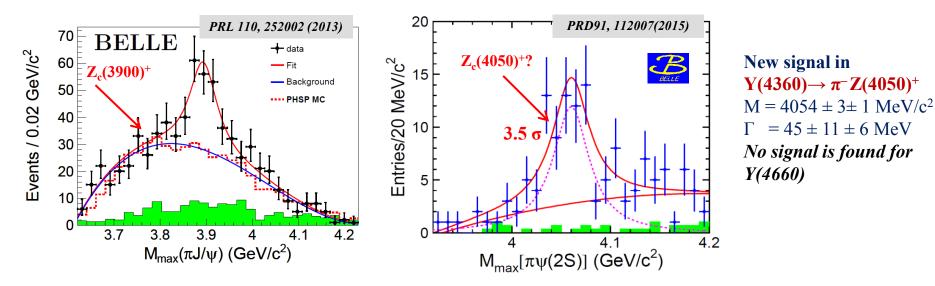
• Full amplitude analysis to obtain spin-parity Mass values are the same, width depends on method

 $\frac{Z(4250)^{+} \& Z(4050)^{+}}{\text{in } \chi_{c1}\pi^{+} \text{ final state}} \\ \circ \text{ Daliz analysis}$

$Z_c(4200)^+$ in J/ $\psi \pi^+$ final state, J^P=1⁺


 \circ 4D-fit: Dalitz + angular variables

∘ New decay mode $Z_c(4430)^+ \rightarrow J/\psi \pi$

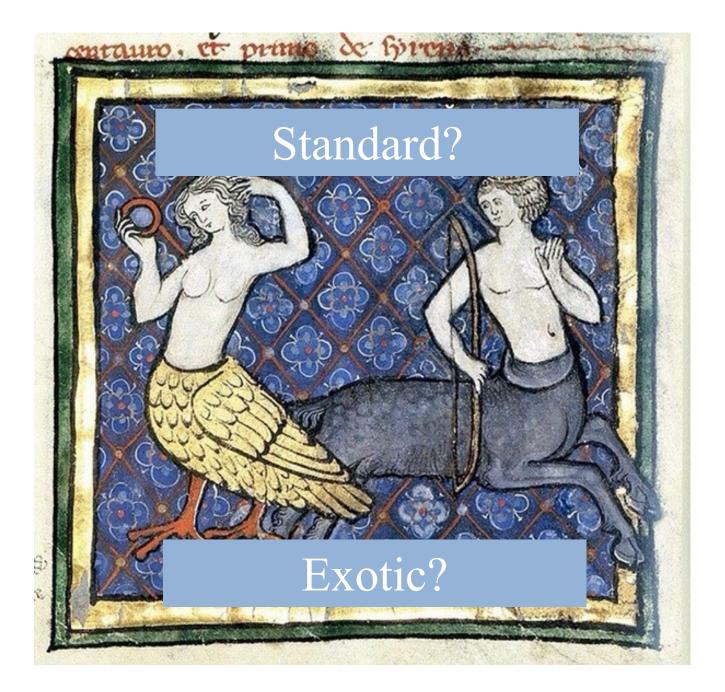

 \circ order of magnitude suppressed (to $\psi(2S)\pi$) despite larger phase space

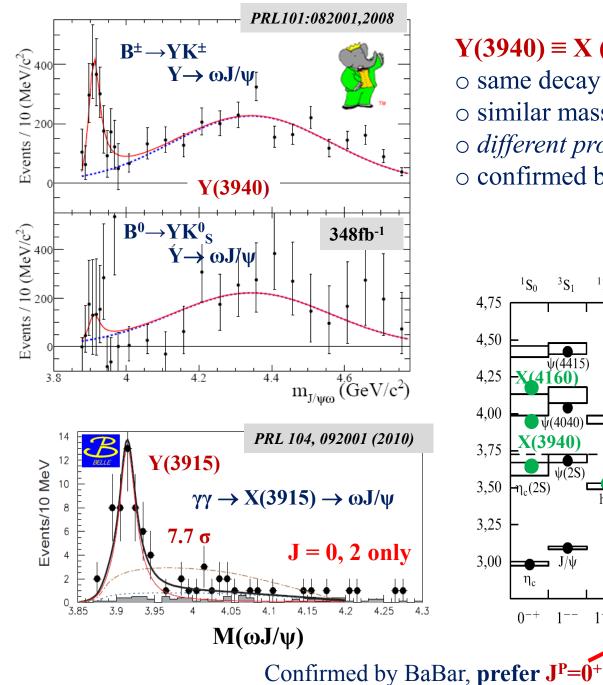
BaBar does not confirm Belle, but also does not rule it out!

Z_c family in e⁺e⁻ annihilation

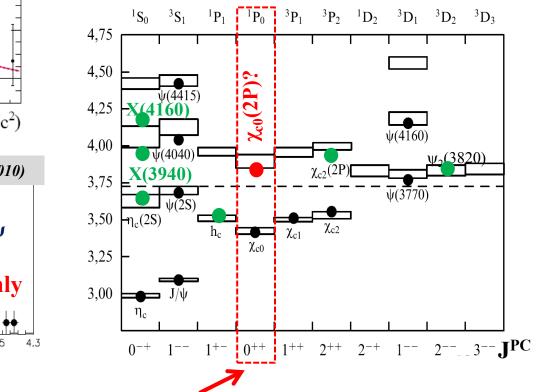
• If these structures are real QCD states, charged Z_c decays into $\pi^{+/-} J/\psi (\pi^{+/-}h_c) \rightarrow at$ least four valence quarks to satisfy charge= ± 1 and strong couplings to ccbar components.

BESIII: a summary of Z_c observations


Zc	Mass (MeV/c ²)	Width (MeV)	Decay	Process	[Ref]
Z _c (3900) [±]	3899.0±3.6±4.9	46±10±20	$\pi^{\pm}J/\psi$	$e^+e^- ightarrow \pi^+\pi^- J/\psi$	[1]
$Z_{c}(3900)^{0}$	3894.8±2.3±2.7	29.6±8.2±8.2	$\pi^0 J/\psi$	$e^+e^- ightarrow \pi^0\pi^0 J/\psi$	[2]
	3883.9±1.5±4.2 Single D tag	24.8±3.3±11.0 Single D tag	$(\boldsymbol{D}\overline{\boldsymbol{D}}^*)^{\pm}$	$e^+e^- \rightarrow (D\overline{D}^*)^{\pm}\pi^{\mp}$	[3]
Z _c (3885) [±]	3881.7±1.6±2.1 Double D tag	26.6±2.0±2.3 Double D tag	$(\boldsymbol{D}\overline{\boldsymbol{D}}^*)^{\pm}$	$e^+e^- \rightarrow (D\overline{D}^*)^{\pm}\pi^{\mp}$	[4]
Z _c (3885) ⁰	3885.7 ^{+4.3} _{-5.7} ±8.4	35 ⁺¹¹ ₋₁₂ ±15	$(D\overline{D}^*)^0$	$e^+e^- ightarrow (D\overline{D}^*)^0 \pi^0$	[5]
Z _c (4020) [±]	4022.9±0.8±2.7	7.9±2.7±2.6	$\pi^{\pm}h_c$	$e^+e^- ightarrow \pi^+\pi^-h_c$	[6]
$Z_{c}(4020)^{0}$	4023.9±2.2±3.8	fixed	$\pi^0 h_c$	$e^+e^- ightarrow \pi^0\pi^0h_c$	[7]
$Z_c(4025)^{\pm}$	4026.3±2.6±3.7	24.8±5.6±7.7	$D^*\overline{D}^*$	$e^+e^- ightarrow (D^*\overline{D}^*)^{\pm}\pi^{\mp}$	[8]
Z _c (4025) ⁰	$4025.5^{+2,0}_{-4.7}\pm 3.1$	23.0±6.0±1.0	$D^*\overline{D}^*$	$e^+e^- ightarrow (D^*\overline{D}^*)^0\pi^0$	[9]

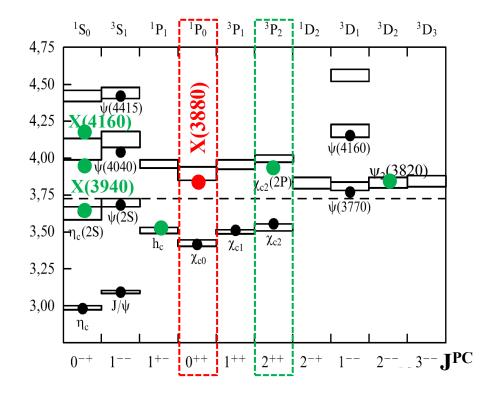

^[1] PRL 110,252001; ^[2] PRL 115, 112003; ^[3] PRL 112, 022001; ^[4] PRD 92, 092006 ^[5] PRL 115, 222002; ^[6] PRL110, 252001; ^[7] PRL 113,212002; ^[8] PRL 112, 132001 ^[9] PRL 115, 182002

Shan JIN Institute of High Energy Physics On Behalf of the BESIII Collaboration


- Charged and neutral Z_c's are consistent with isospin triplets expectations.
- Mass and widths of Z_c(3900) and Z_c(3885) (also Z_c(4020) and Z_c(4025)) are consistent within 2σ → the same states?

ICHEP2016, August 4, Chicago

Y(3940) ≡ X (3915) same decay mode
similar masses and widths *different production mechanisms*confirmed by Belle & BaBar

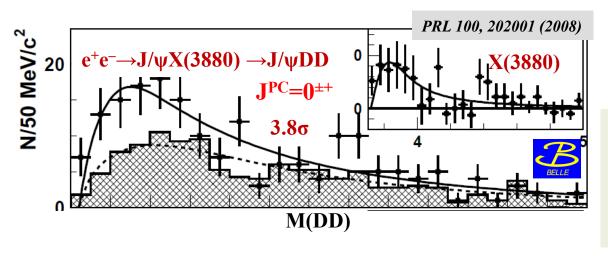

X(3915) puzzle

Partilce Data Group Y(3940) = X(3915) = $\chi_{c0}(2P)$

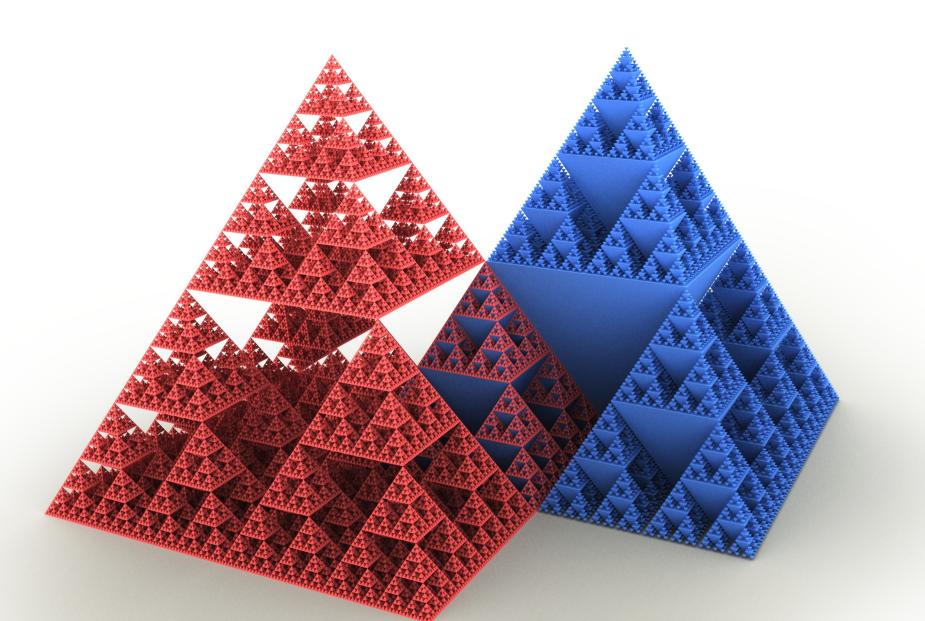
Theory

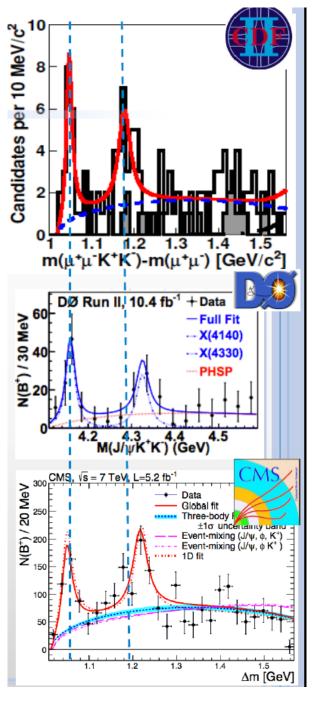
 $\chi_{c0}(2P)$ production in two body B decays is suppressed
 $\chi_{c0}(2P)$ → DD should be dominant

 \circ a better candidate for χ_{c0}(2P) seen in **X(3880)**→ DD



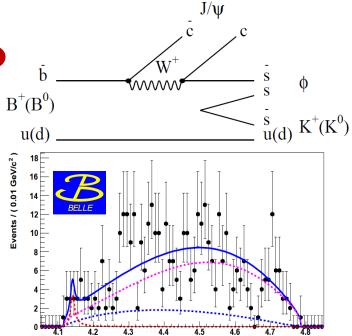
New ideas:


• Y(3940) = Y(3915) is $\chi_{c2}(2P)$ • $\chi_{c2}(2P) \neq Z(3940)$ Z(3940) = Y(3940) = Y(3915) is $\chi_{c0}(2P)$

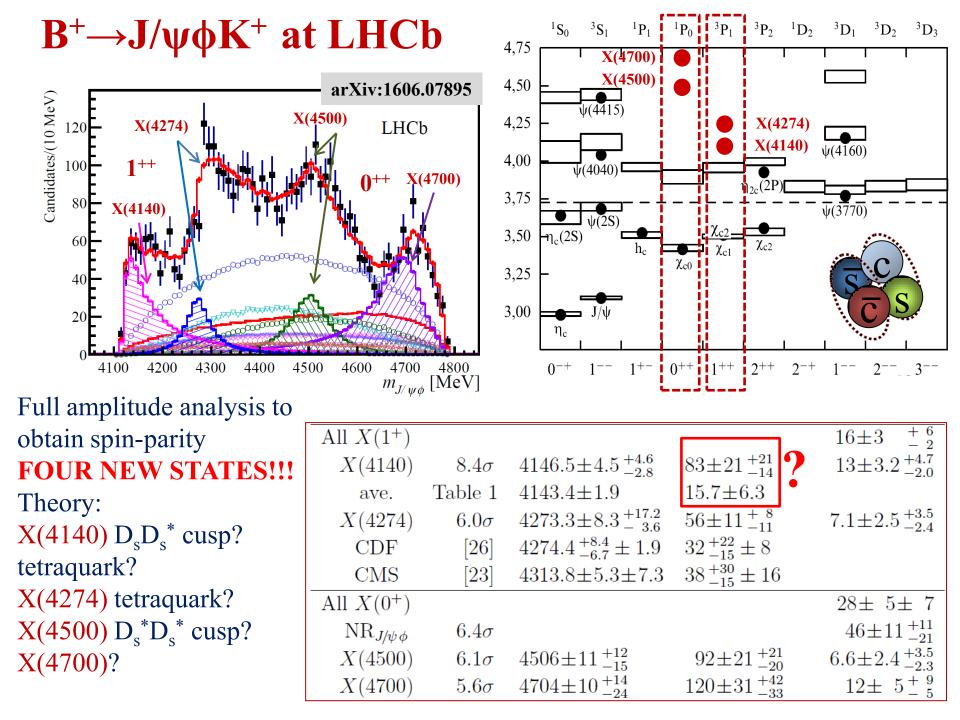

Future

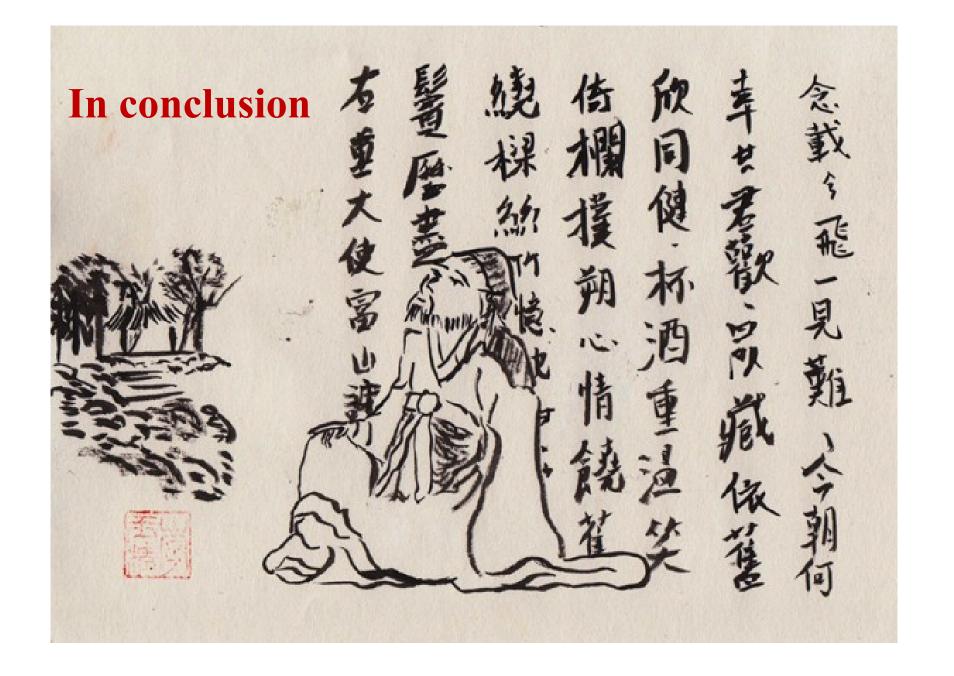
More data for new angular analysis to confirm quantum numbers

Search for tetraquarks



$B^+ \rightarrow J/\psi \phi K^+$ Y(4140) $\rightarrow J/\psi \phi$


Y(4140) & Y(4274) narrow peak at threshold and one more nearby



3	4.4	4.5	4.0
	Μ(J/ ψ φ)	(GeV/c²)	

Exp.	N_B	Mass [MeV]	Width [MeV]	σ	Frac. [%]
CDF [1]	58	$4143.0 \pm 2.9 \pm 1.2$	$11.7^{+8.3}_{-5.0} \pm 3.7$	3.8	
Belle [19]	325	4143.0 fixed	11.7 fixed	1.9	
CDF [26]	115	$4143.4^{+2.9}_{-3.0}\pm0.6$	$15.3^{+10.4}_{-6.1} \pm 2.5$	5.0	15±4±2
LHCb [21]	346	4143.4 fixed	15.3 fixed	1.4	< 7
CMS [23]	2480	$4148.0 \pm 2.4 \pm 6.3$	$28 \ ^{+15}_{-11} \ \pm 19$	5.0	10 ± 3
D0 [24]	215	$4159.0 \pm 4.3 \pm 6.6$	$19.9 \pm 12.6 {}^{+1.0}_{-8.0}$	3.1	$21\pm8\pm4$
BaBar [22]	189	4143.4 fixed	15.3 fixed	1.6	< 13
D0 [25]	_	$4152.5 \pm 1.7 {}^{+6.2}_{-5.4}$	$16.3 \pm 5.6 \pm 11.4$	4.7–5	7 -
Average		4143.4 ± 1.9	15.7 ± 6.3		

Conclusion

- Since 2002 six standard charmonium states were discovered.
 Charmonium table below DD threshold is completed now.
- About two dozens of charmoniumlike states were found recently and this list continues to increase. *All of them are above open charm threshold*.
- Nature of the most of XYZ states is open question yet.
- Precise measurements of known charmonium(+like) states and search for new charmonium(+like) states above open charm threshold are needed.