Sub-GeV atmospheric neutrinos background in organic liquid scintillator mediums

Viktor Atroshchenko¹ and Evgeny Litvinovich^{1,2}

¹ NRC Kurchatov Institute, ² NRNU MEPhI

International Conference on Particle Physics and Astrophysics (ICPPA)

October 13, 2016

Atmospheric neutrinos

- Cosmic rays interactions with atomic nuclei in atmosphere
- $\pi^{\pm}/K^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu})$

 $\begin{array}{c} \mu^- \to e^- \overline{\nu}_e \nu_\mu \\ \mu^+ \to e^+ \nu_e \overline{\nu}_\mu \end{array}$

• $\frac{\nu_{\mu} + \bar{\nu}_{\mu}}{\nu_e + \bar{\nu}_e} \approx 2$, $E_{\nu} \lesssim 1 \text{ GeV}$

For $E_{\nu} \leq 100$ MeV:

G. Battistoni, A. Ferrari, T. Montaruli, P.R. Sala

The atmospheric neutrino flux **below 100 MeV**: The FLUKA results

Astroparticle Physics, volume 23 issue 5, pp. 526–534, June 2005

Background for:

- DSNB
- proton decay (e.g. $\nu_{\mu}p \rightarrow \mu^{-}K^{+}p$ for $p \rightarrow \bar{\nu}K^{+}$)
- any processes with up to few expected events per year

Logarithmic quadratic spline interpolation

Atmospheric neutrinos

Different locations

- Borexino @ Gran Gasso, Italy
- KamLAND @ Kamioka, Japan
- SNO+ @ Sudbury, Ontario, Canada
- JUNO @ Jiangmen, China

Different magnetic field Different atmosphere density profile

Different flux

For 100 MeV < $E_{\nu} \leq$ 10 GeV:

M. Honda, M. Sajjad Athar, T. Kajita, K. Kasahara, and S. Midorikawa

Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model

Phys. Rev. D 92, 023004 - Published 7 July 2015

Integrated oscillated flux calculation

Integrated oscillated flux calculation

Scintillators properties

	Borexino	KamLAND	SNO+	JUNO
Composition	PC + 1.5 g/l PPO	Dodecane 80% + PC 20% + PPO 1.36 g/l	LAB + 2 g/l PPO + 15mg/l bis–MSB	LAB + 3 g/L PPO + 15 mg/L bis-MSB
Density, g/cm ³	0.876	0.780	0.86	0.86
Target mass, tons	278	900	780	20000
Energy resolution	5% @ 1 MeV	6.4% @ 1 MeV	5% @ 1 MeV	3% @ 1 MeV
kB, μm/MeV	e/γ: 115 α: 92 p: 115	e/γ: 138 α: 148 p: 100	e/γ: 74 α: 76 p: 97	e/γ: 74 α: 74 p: 98

Scintillation quenching Birk's law:

$$\frac{dL}{dx} = S \frac{dE/dx}{1 + kB dE/dx}$$

dx I + KB dE/dxL – light yield, S – scintillation efficiency, kB – Birks' constant, which depends on the material, dE/dx – energy loss of the particle per path length. dE/dx calculation:

- ESTAR for e
- SRIM for *p* and α

Organic scintillators

- Most common particles: *e*, *p*, ¹²*C*
- ¹⁴*C* β decay \Rightarrow low energy threshold **250 keV**

Neutrino electron elastic scattering

 $d\sigma 2C^{2}m$

$$\frac{u\sigma}{dT_e} = \frac{2u_F m_e}{\pi E_v^2} (g_L^2 E_v^2 + g_R^2 (E_v - T_e)^2 - g_L g_R m_e T_e)$$

$$\frac{10^{-5} \text{ electrons / year / 100 tons}}{0.25 < E^{vis} < 1 & 10 & 100 & 1000 \\ \text{Borexino} & 4.469 & 53.626 & 325.865 & 710.593 \\ \text{KamLAND} & 3.373 & 40.531 & 252.143 & 585.813 \\ \text{SNO+} & 6.068 & 72.603 & 431.313 & 875.546 \\ \text{JUNO} & 2.885 & 34.724 & 216.861 & 512.466 \\ \end{array}$$

Inverse beta-decay

Neutrino proton elastic scattering

 $\nu + p \rightarrow \nu + p$

Ahrens, L. A. et al.

Measurement of neutrino-proton and antineutrinoproton elastic scattering

Phys. Rev. D 35, pp. 785-809, 1987

Recoil protons / year / 100 tons 0.25<Evis< 1 10 100 1000 ... MeV 0.0261 Borexino 0.1533 0.4594 0.5917 **KamLAND** 0.0254 0.1572 0.5045 0.6704 SNO+ 0.0401 0.2380 0.6926 0.8721 JUNO 0.0193 0.1181 0.3797 0.5073

$$\frac{d\sigma}{dT_p} = \frac{G_F^2 m_p^3}{4\pi E_v^2} \left(A(Q^2) \mp \frac{(s-u)}{m_p^2} B(Q^2) + \frac{(s-u)^2}{m_p^4} C(Q^2) \right)$$

$$v + {}^{12}C \rightarrow v + {}^{12}C^*$$

$$1{}^{2}C^* \rightarrow {}^{12}C + \gamma(15.11 \text{ MeV})$$
Donelly, T. W. and Peccei, R. D.
Neutral current effects in nuclei
Physics Reports, vol. 50, iss. 1, 1979
$$vear \cdot N_{12}c \cdot \sum_{l=v,\overline{v}} \int dE_i flux_i(E_i)\sigma_i(E_i)$$
Gammas / year / 100 tons
Borexino
0.0293
KamLAND
0.0208
SNO+
0.0371
JUNO
0.0189

CC:
$$\nu + {}^{12}C \rightarrow e^{\pm}/\mu^{\pm} + \dots + X$$

NC: $\nu + {}^{12}C \rightarrow \nu + \dots + X$

$$dE_{\nu}flux(E_{\nu})\sigma_{tot}^{GENIE}(E_{\nu})$$

Total number of events with G	ENIE cross-sections
-------------------------------	----------------------------

Events/ year/ 100 tons	$E_{\nu} \leq 1 \mathrm{GeV}$	$E_{\nu} \leq 10 \text{ GeV}$
Borexino	11.326	19.311
KamLAND	8.534	15.632
SNO+	13.074	21.100
JUNO	7.892	14.834

• 2×10⁶ events normalized by

$$\sum_{i,j} \int dE_{\nu_i} flux_i (E_{\nu_i}) \sigma_j (E_{\nu_i})$$

Double event signature		
Prompt	e [≁] annihilation	
Delayed	n capture	

$GENIE \rightarrow Geant4 \ simulated$ Atmospheric $v - {}^{12}C$ interactions Single events

Events / year / 100 tons				
0.25 <e<sup>vis< MeV</e<sup>	1	10	100	1000
Borexino	0.04127	0.4619	1.420	5.736
KamLAND	0.02825	0.3252	1.035	4.401
SNO+	0.04939	0.5546	1.699	6.596
JUNO	0.02612	0.3036	0.9522	4.055

$GENIE \rightarrow Geant4 \ simulated$ Atmospheric $\nu - {}^{12}C$ interactions IBD-like events

Events / year / 100 tons			
0.25 <e<sup>vis< MeV</e<sup>	10	100	1000
Borexino	0.4352	1.362	3.711
KamLAND	0.3104	1.031	2.955
SNO+	0.5107	1.633	4.300
JUNO	0.2823	0.9387	2.681

Thanks for your attention!

Backup

