# Measurement of *R* between 1.84 and 3.72 GeV at the KEDR detector

**KEDR** collaboration

October 2016

#### VEPP-4M and KEDR



# R(s) measurement



$$\frac{\sigma(e^-e^+ \to \text{hadrons})}{\sigma(e^-e^+ \to \mu^-\mu^+)} \approx \frac{e^+}{e^+} \frac{\varphi^+}{\varphi^+} \frac{\varphi^+}{\varphi^+}$$
In first approximation:

In first approximation: $R(s)\simeq 3\sum e_q^2$ 

R(s) is used to determine:

•  $\alpha_s(s)$ •  $(g_{\mu} - 2)/2$ •  $\alpha(M_Z^2)$ 

ICPPA-2016 Measurement of R between 1.84 and 3.72 GeV at the KEDR detector KEDR collaboration

# *R* contribution in $a_{\mu}$ and $\alpha(M_Z^2)$



4/16

#### **R** measurement between $J/\psi$ and $\psi(2S)$



- The c.m. energy range between 3.12 and 3.72 GeV studied
- An integrated luminosity of 1.4  $pb^{-1}$  collected at 7 equidistant points with a step of  $\sim$  0.1 GeV: 3.12, 3.22, . . ., 3.72 GeV
- =  $(2-3)\cdot 10^3$  events per point,  $\sim 18\cdot 10^3$  in total
- Simulation of the uds continuum based on the tuned JETSET 7.4 generator, alternatively used LUARLW (H.M. Hu and A. Tai, hep-ex/0106017)

V.V. Anashin et al., Phys.Lett. B753,533 (2016)

#### Analysis

The way that we are measuring R:

$$R = \frac{\sigma_{obs}(s) - \sum \varepsilon_{\psi}^{tail}(s) \sigma_{\psi}^{tail}(s) - \sum \varepsilon_{bg}^{i}(s) \sigma_{bg}^{i}(s)}{\varepsilon(s)(1 + \delta(s)) \sigma_{\mu\mu}^{0}}$$
(1)

with  $\sigma_{obs}(s) = \frac{N_{mh} - N_{res.bg.}}{\int \mathcal{L} dt}$  where  $N_{mh}$  represent all events pass hadronic selection criteria,  $N_{res.bg.}$  – residual machine background  $\sum \varepsilon_{\psi}^{tail}(s)\sigma_{\psi}^{tail}(s)$  – is contribution from  $J/\psi$  and  $\psi(2S)$  resonances  $\sum \varepsilon_{bg}^{i}(s)\sigma_{bg}^{i}(s)$  – is contribution from physical processes:  $e^+e^- \rightarrow l^+l^-$ ,  $\gamma\gamma$ -processes.

 $\varepsilon(s)$  – multihadron efficiency.

$$1 + \delta(s) = \int dx \frac{1}{1 - x} \frac{\mathcal{F}(s, x)}{\left|1 - \tilde{\Pi}(s(1 - x))\right|^2} \frac{\tilde{R}(s(1 - x))\varepsilon(s(1 - x))}{R(s)\varepsilon(s)} \quad (2)$$

 $\mathcal{F}(s, x)$  – radiative correction kernel (E.A.Kuraev, V.S.Fadin Sov.J.Nucl.Phys.41(466-472)1985) Here  $\tilde{\Pi}$  and  $\tilde{R}$  does not includes  $J/\psi$  and  $\psi(2S)$  resonances.

# Simulation: JETSET and LUARLW



Experimental distribution and two variants of MC simulation based on LUARLW and JETSET are plotted ( $\sqrt{s} = 3.12$  GeV).

### Simulation: JETSET and LUARLW



# Systematic uncertainty

| Source              | Syst. error, %  |
|---------------------|-----------------|
| Luminosity          | 1.1             |
| Rad. corr.          | $0.4 \div 0.6$  |
| uds simulation      | $1.4 \div 2.1$  |
| $J/\psi$            | $0.1 \div 2.7$  |
| $\psi(2S)$          | 1.4 at 3.72 GeV |
| 1+1-                | $0.1 \div 0.2$  |
| $e^+e^-X$           | $0.1 \div 0.2$  |
| Trigger             | 0.2             |
| Nuclear interaction | 0.2             |
| Machine background  | $0.7 \div 1.1$  |
| Cuts                | 0.6             |
| Total               | $2.1 \div 3.5$  |

#### *R* for $\sqrt{s}$ = 3.12 – 3.72 GeV



Using  $J/\psi$  and  $\psi(25)$  parameters, we obtain  $R_{uds}(s) + R_{J/\psi+\psi(25)} \Longrightarrow R(s)$ 

| $\sqrt{s}$ , MeV | $R_{uds}(s)$                | R(s)                        |
|------------------|-----------------------------|-----------------------------|
| $3119.9\pm0.2$   | $2.215 \pm 0.089 \pm 0.066$ | $2.237 \pm 0.089 \pm 0.066$ |
| $3223.0\pm0.6$   | $2.172 \pm 0.057 \pm 0.045$ | $2.173 \pm 0.057 \pm 0.045$ |
| $3314.7\pm0.7$   | $2.200 \pm 0.056 \pm 0.043$ | $2.200 \pm 0.056 \pm 0.043$ |
| $3418.2\pm0.2$   | $2.168 \pm 0.050 \pm 0.042$ | $2.168 \pm 0.050 \pm 0.042$ |
| $3520.8\pm0.4$   | $2.200 \pm 0.050 \pm 0.044$ | $2.201 \pm 0.050 \pm 0.044$ |
| $3618.2\pm1.0$   | $2.201 \pm 0.059 \pm 0.044$ | $2.207 \pm 0.059 \pm 0.044$ |
| $3719.4\pm0.7$   | $2.187 \pm 0.068 \pm 0.060$ | $2.211 \pm 0.068 \pm 0.060$ |

#### Comparison with others experiments



# Measurement of R between 1.84 and 3.05 GeV at KEDR

- The c.m. energy range between 1.84 and 3.05 GeV studied
- An integrated luminosity 0.66  $\rm pb^{-1}$  collected at 13 equidistant with a step  $\sim$  0.1 GeV: 1.841, 1.937 ... 3.048 GeV
- $\blacksquare~\sim 10^3$  hadronic events per point,  $14.8\cdot 10^3$  events in total
- Simulation of the uds continuum based on the tuned LUARLW generator, H.M. Hu and A. Tai, hep-ex/0106017
- JETSET 7.4 alternatively used at 6 points for a cross-check

$$R = \frac{\sigma_{obs}(s) - \sum \varepsilon_{bg}^{i}(s)\sigma_{bg}^{i}(s)}{\varepsilon(s)(1 + \delta(s))\sigma_{\mu\mu}^{0}}$$

# Preliminary R for the energy range 1.84–3.05 GeV.



The main systematic uncertainties in the *R*:

| Source              | Error,%        |
|---------------------|----------------|
| Luminosity          | 1.2            |
| Rad. corr.          | $0.5 \div 2.0$ |
| uds simulation      | $1.2 \div 6.6$ |
| 1+1-                | $0.6 \div 0.3$ |
| $e^+e^-X$           | 0.2            |
| Trigger             | 0.3            |
| Nuclear interaction | 0.4            |
| Machine background  | $0.4 \div 0.9$ |
| Cuts                | 0.7            |
| Total               | $2.1 \div 7.1$ |

We have measured the values of R at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than 3.3% at most of energy points with a systematic uncertainty of about 2.1%.

We have determined the values of R at thirteen points of the center-of-mass energy between 1.84 and 3.05 GeV. The achieved accuracy is about or better than 3.9% at most of energy points with a systematic uncertainty less than 2.4%.

At the moment it is the most accurate measurement of R(s) in the energy range  $1.84 \div 3.72$  GeV.

# BACKUP SLIDES

### **Selection criteria**

Selection criteria for hadronic events which were used by AND.

| Variable                            | Allowed range                                                                    |                                                                   |  |  |  |
|-------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
|                                     | 3.12-3.72 GeV                                                                    | 1.84 - 3.05 GeV                                                   |  |  |  |
| N <sup>IP</sup> <sub>track</sub>    | $\geq 1$                                                                         | $\geq 1$                                                          |  |  |  |
| E <sub>obs</sub>                    | > 1.6  GeV                                                                       | > 1.4 GeV                                                         |  |  |  |
| $E_{\gamma}^{ m max}/E_{ m beam}$   | < 0.8                                                                            | < 0.8                                                             |  |  |  |
| $E_{ m obs} - E_{\gamma}^{ m max}$  |                                                                                  | > 1.2 GeV                                                         |  |  |  |
| $E_{\rm cal}^{\rm tot}$             | > 0.75 GeV                                                                       | > 0.55 GeV                                                        |  |  |  |
| $H_2/H_0$                           | < 0.85                                                                           | < 0.9                                                             |  |  |  |
| $ P_z^{miss}/E_{obs} $              | < 0.6                                                                            | < 0.7                                                             |  |  |  |
| $E_{\rm LKr}/E_{\rm cal}^{\rm tot}$ | > 0.15                                                                           | > 0.15                                                            |  |  |  |
| $ Z_{vertex} $                      | < 20.0 cm                                                                        | < 15.0 cm                                                         |  |  |  |
|                                     | $N_{	ext{particles}} \geq 4 	ext{ or } 	ilde{N}_{	ext{track}}^{	ext{IP}} \geq 2$ | $N_{ m particles} \geq 3$ or $	ilde{N}_{ m track}^{ m IP} \geq 2$ |  |  |  |

# $\Pi(s)$ calculation



#### **Radiation correction calclulation**



3 
$$\varepsilon(x)$$
 (scan 1,  $\sqrt{s} = 3.52$  GeV).

$$1+\delta(s) = \int \frac{dx}{1-x} \frac{\mathcal{F}(s,x)}{|1-\tilde{\Pi}((1-x)s)|^2} \frac{\tilde{R}((1-x)s)\varepsilon((1-x)s)}{R(s)\varepsilon(s)}$$

$$R(s) = -rac{3}{lpha}\,{
m Im}\,\Pi_{
m hadr}(s)$$

Vacuum polarization according to CMD-2 data compilation: Eur. Phys. J. C66 (2010) 585

| Point | Scan 1              | ${\sf S}{\sf can}\; 21+\delta$ | Uncertainty,% |            |                      |                  | Tota |
|-------|---------------------|--------------------------------|---------------|------------|----------------------|------------------|------|
|       |                     |                                | $\Pi(s)$      | $\delta R$ | $\delta \varepsilon$ | $\delta_{calc.}$ |      |
| 1     | $1.0941\pm0.0066$   | $1.1074\pm0.0066$              | 0.3           | 0.5        | 0.2                  | 0.2              | 0.6  |
| 2     | $1.0949 \pm 0.0055$ | $1.1049\pm 0.0055$             | 0.1           | 0.4        | 0.2                  | 0.2              | 0.5  |
| 3     | $1.0959 \pm 0.0055$ | $1.1100 \pm 0.0056$            | 0.1           | 0.4        | 0.2                  | 0.2              | 0.5  |
| 4     | $1.0982 \pm 0.0044$ | $1.1094\pm0.0044$              | 0.1           | 0.3        | 0.2                  | 0.2              | 0.4  |
| 5     | $1.1032 \pm 0.0044$ | $1.1102\pm0.0044$              | 0.1           | 0.3        | 0.2                  | 0.2              | 0.4  |
| 6     | $1.1021 \pm 0.0044$ | $1.1098 \pm 0.0044$            | 0.1           | 0.3        | 0.2                  | 0.2              | 0.4  |
| 7     | $1.1049 \pm 0.0055$ | $1.1067 \pm 0.0055$            | 0.4           | 0.3        | 0.2                  | 0.2              | 0.5  |

### Simulation: JETSET and LUARLW



Total observed energy, sum of cluster energies

Experimental distribution and two variants of MC simulation based on LUARLW and JETSET are plotted ( $\sqrt{s} = 3.12$  GeV).

#### pQCD calculation

f

R(s), obtained in: P.A.Baikov *et al.* Nucl. and Part. Phys. Proceed. 261-262(2015):

$$R^{n_f=3}(s) = 2\left[1 + \frac{\alpha_s}{\pi} + 1.6398\left(\frac{\alpha_s}{\pi}\right)^2 - 10.2839\left(\frac{\alpha_s}{\pi}\right)^3 - 106.8798\left(\frac{\alpha_s}{\pi}\right)^4\right].$$

 $\alpha_s$  obtained in K.G.Chetyrkin, B.A.Kniehl, M.Steinhauser PRL 79 (1997)

$$\alpha_{s} = \frac{1}{\beta_{0}L} - \frac{1}{(\beta_{0}L)^{2}} \frac{\beta_{1}}{\beta_{0}} \ln L + \frac{1}{(\beta_{0}L)^{3}} \left[ \left( \frac{\beta_{1}}{\beta_{0}} \right)^{2} (\ln^{2}L - \ln L - 1) + \frac{\beta_{2}}{\beta_{0}} \right] \\ + \frac{1}{(\beta_{0}L)^{4}} \left[ \left( \frac{\beta_{1}}{\beta_{0}} \right)^{3} \left( -\ln^{3}L + \frac{5}{2} \ln^{2}L + 2\ln L - \frac{1}{2} \right) - 3\frac{\beta_{1}\beta_{2}}{\beta_{0}^{2}} \ln L + \frac{\beta_{3}}{2\beta_{0}} \right]$$
  
For  $n_{f} = 3 \ \beta_{0} = \frac{9}{4}, \beta_{1} = 4, \beta_{2} = \frac{3863}{384}, \beta_{3} = \frac{445}{32}\zeta(3) + \frac{140599}{4608}, L = \ln^{2}\frac{Q^{2}}{\Lambda_{MS}^{2}}$ 

 $\alpha_s(m_{\tau}^2) = 0.331 \pm 0.013$  (A.Pich Nucl. and Part. Phys. Proceed. 260 (2015) 61-69) allow to get  $R_{uds}^{pQCD} = 2.16 \pm 0.01$  in energy range  $3.1 \div 3.7$  GeV.

 $\sigma^{e^+e^- \rightarrow hadrons}$  and  $\sigma^{e^+e^- \rightarrow e^+e^-}$  nearby a narrow resonance

Analytical expression for the annihilation cross section nearby a narrow resonance in the soft photon approximation was first obtained in Ya.I. Azimov *et al.* JETP Lett. 21 (1975) 172

With up-today modifications one has

$$\begin{split} \sigma^{\mathbf{e}^{+}\mathbf{e}^{-}\rightarrow\mathbf{hadr}}(s) &= \sigma^{\mathbf{e}^{+}\mathbf{e}^{-}\rightarrow\mathbf{hadr}}_{\mathbf{centinuum}} + \frac{12\pi}{s} \left(1 + \delta_{sf}\right) \left[\frac{\Gamma_{ee}\tilde{\Gamma}_{h}}{\Gamma M} \operatorname{Im} f(s) - \frac{2\alpha\sqrt{R}\Gamma_{ee}\tilde{\Gamma}_{h}}{3\sqrt{s}}\lambda \operatorname{Re}\frac{f^{*}(s)}{1 - \Pi_{0}}\right] \\ &\left(\frac{d\sigma}{d\Omega}\right)^{\mathbf{e}e\rightarrow\mathbf{ee}} = \left(\frac{d\sigma}{d\Omega}\right)^{\mathbf{e}e\rightarrow\mathbf{ee}}_{QED} + \frac{1}{s} \left\{\frac{9}{4}\frac{\Gamma_{ee}^{2}}{\Gamma M}(1 + \cos^{2}\theta) \left(1 + \delta_{sf}\right) \operatorname{Im} f - \frac{3\alpha}{2}\frac{\Gamma_{ee}}{M}\left[(1 + \cos^{2}\theta) - \frac{(1 + \cos^{2}\theta)^{2}}{(1 - \cos\theta)}\right]\operatorname{Re}\frac{f^{*}}{1 - \Pi_{0}}\right] \\ &\delta = \frac{3}{4}\beta + \frac{\alpha}{\pi}\left(\frac{\pi^{2}}{3} - \frac{1}{2}\right) + \beta^{2}\left(\frac{37}{96} - \frac{\pi^{2}}{12} - \frac{L}{72}\right), \quad L = \ln\left(s/m_{e}^{2}\right), \\ &\beta = \frac{2\alpha}{\pi}\left(L - 1\right), \qquad f(s) = \frac{\pi\beta}{\sin\pi\beta}\left(\frac{s}{M^{2} - s - iM\Gamma}\right)^{1 - \beta} \end{split}$$

 $\Gamma_{ee}$ ,  $\Gamma$ , M – 'dressed' parameters including corrections to the vacuum polarization,  $\Gamma_{ee} = \Gamma_{ee}^{(0)}/|1 - \Pi_0|^2$ ,  $\lambda$ -parameter controls the resonance-continuum interference,  $\tilde{\Gamma}_h \neq \Gamma_h$ Numerical convolution with the collision energy distribution is used to fit resonance.

# Interference effects in the inclusive hadronic cross section

If strong and electromagnetic decays of the resonance do not interfere  $\lambda = \sqrt{R\mathcal{B}_{ee}/\mathcal{B}_h}$  otherwise for an exclusive mode *m* contributing  $R_m$  to the *R* ratio the partial width is

$$\Gamma_m = R_m \Gamma_{ee} + \Gamma_m^{(s)} + 2\sqrt{R_m \Gamma_{ee} \Gamma_m^{(s)}} \left\langle \cos \phi_m \right\rangle_{\Theta},$$

The brackets  $\langle \rangle_{\Theta}$  denote averaging over the phase space.

$$\lambda = \sqrt{\frac{R\mathcal{B}_{ee}}{\mathcal{B}_{h}}} + \sqrt{\frac{1}{\mathcal{B}_{h}}} \sum_{m} \sqrt{b_{m} \mathcal{B}_{m}^{(s)}} \left\langle \cos \phi_{m} \right\rangle_{e}$$

where  $b_m = R_m/R$  is the branching fraction for the continuum,  $\mathcal{B}_m^{(s)} = \Gamma_m^{(s)}/\Gamma$ .

$$\tilde{\Gamma}_{h} = \Gamma_{h} \times \left( 1 + \frac{2\alpha}{3(1 - \operatorname{Re}\Pi_{0})\mathcal{B}_{h}} \sqrt{\frac{R}{\mathcal{B}_{ee}}} \sum_{m} \sqrt{b_{m}\mathcal{B}_{m}^{(s)}} \langle \sin \phi_{m} \rangle_{\Theta} \right)$$

 $\Gamma_m$  ambiguity: fit gives  $\tilde{\Gamma}_m$  and  $\cos \phi_m$ , the sign of  $\sin \phi_m$  required for  $\Gamma_m$  determination is not known

ICPPA-2016 Measurement of R between 1.84 and 3.72 GeV at the KEDR detector KEDR collaboration 22/16