The 2nd International Conference on Particle Physics and Astrophysics,

Moscow, October 10-14

COHERENT experiment: CsI detector

Alexey Konovalov (ITEP, NRNU «MEPhI»)

on behalf of

Outline

- 1. COHERENT detectors: location at SNS
- 2. Csl detector shielding and veto
- 3. Data taking and analysis strategy
- 4. Signal/background
- 5. Calibration and QF measurements

CsI [Na] detector location

Crystal parameters and shield design

The set up was developed at the University of Chicago

CsI[Na] cylindrical crystal manufactured by Amcrys-H, Ukraine:

- diameter: 11 cm,
- length: 34 cm,
- weight: 14.5 kg +
- R877-100 PMT

Shielding design

* - high density polyethylene

Shield assembling

Data taking and analysis strategy

Recording of 70 μs waveforms with 500 MHz sampling of CsI and veto channels

Signal/background

• the steady state background at the SNS is by a factor of 5-10 smaller than the measurement performed at the University of Chicago laboratory (~6 m.w.e. overburden, almost similar shielding)

• the quenching factor has been remeasured indicating non-trivial increase in expected signal yield (TUNL and University of Chicago measurements)

 expected neutrino induced neutron background rate is ~4% of the CEvNS signal due to HDPE

J.I. Collar et al., "Coherent neutrino-nucleus scattering detection with a CsI[Na] scintillator at the SNS spallation source", NIM, 2015

²⁴¹Am calibration and QF

0.

0.08

0.06

0.04

30

20

40

50

70

60

80

Recoil energy (keVnr)

90

²⁴¹Am calibration, 59.54 keV

- photoelectrons \rightarrow keVee
- the light yield shows <~2% deviation along the length of a crystal

QF measurement at TUNL

D(D,n) neutron production, 12 backing detectors and the "zero-degree" beam monitor

• keVee \rightarrow keVnr

two different datasets taken and two separate analyses performed by Chicago and Duke at TUNL

¹³³Ba calibration

collimated pencil beam of ¹³³Ba gammas

The maximum single scattering angle for a coincidence signal is $\theta \sim 12^{\circ}$

Corresponding energy – up to 6.2 keV

<u>Goal:</u>

to have a dataset with few to few tens phe events to "train" cuts on

BrilLanCe crystal to trigger on forward scattered gammas

Summary

Data and operation:

- ²⁴¹Am and ¹³³Ba calibrations of CsI[Na] detector were done
- QF measurements of CsI[Na] were performed
- CsI[Na] detector has been taking data for ~ 1 year at SNS (~ 400 CEvNS)

Analysis:

- ²⁴¹Am analysis is mostly finished
- ¹³³Ba is in process
- QF analysis is coming to its end

Plans:

- continue data taking at SNS
- perform in-situ neutron calibration with ²⁵²Cf

We are starting to look at ROI!

Backup: low energy event at SNS

Backup: QF measurements at TUNL

TUNL shielded source area (SSA)

- D(D,n) generator (3.8 MeV)
- shield to attenuate off-axis neutrons
- scatterer under investigation (not shown)
- twelve backing detectors
- zero-degree beam monitor