

Recent Results from Borexino

Dominik Jeschke on behalf of the Borexino Collaboration

Technical University of Munich

The 2nd International Conference on Particle Physics and Astrophysics

Moscow, October 10 – 14, 2016

Why Borexino?

Borexino Time Line

Phase I:

First direct ⁷Be ν measurement (2007) ⁷Be ν precision measurement (5%, 2011) ⁸B ν measurement above 3 MeV (2010) First direct pep ν measurement (2012) Strongest CNO limit (2012) Geo ν observation (2010)

Phase II:

First direct pp ν measurement (2014) Geo ν spectroscopy (2015)

$pp-\nu$ Results

Measurement: $144 \pm 13 \text{ cpd} / 100 \text{ t}$ Expected: $131 \pm 2 \text{ cpd} / 100 \text{ t}$ Null hypothesis rejected at 10 σ

Measured Flux: $\Phi_{pp} = (6.6 \pm 0.7) \cdot 10^{10} \text{ cm}^{-2} \text{ s}^{-1}$

- → Confirms LMA-MSW
- ---- Confirms SSM compatible with low & high metallicity
- → Future Borexino inspired experiments to reach uncertainty level
- \rightarrow Confirms Sun's stability over 10^5 years

Borexino pp-Chain Neutrino Results

Solar Neutrino Results

Species	Rate [cpd / 100 t]	Flux [cm ⁻² s ⁻¹]	Reference
PP	$144 \pm 13 \pm 10$	$(6.6 \pm 0.7) \cdot 10^{10}$	Nature512(2014)7515
⁷ Be	$46.0 \pm 1.5^{+1.5}_{-1.6}$	$(4.48 \pm 0.24) \cdot 10^9$	PRL107(2011)141302
рер	3.1 ± 0.6 ±0.3	$(1.6 \pm 0.3) \cdot 10^8$	PRL108(2012)051302
⁸ B	$0.22 \pm 0.04 \pm 0.01$	$(2.4 \pm 0.4 \pm 0.1) \cdot 10^{6}$	PRD82(2010)033006
CNO	< 7.9 (95% C.L.)	< 7.7 · 10 ⁸ (95% C.L)	PRL108(2012)051302
 ⁷Be: I. Absence of day-night assymetry 2. Yearly modulation Cosmogenic backgrounds: I. Seasonal modulation of muon flux Detailed studies of neutrons and cosmogenic 			nds: ⁷ muon flux trons and cosmogenics

Geo-neutrinos

Rare processes: Best limit on e⁻ decay (2015)

Geo Neutrinos

Anti-neutrinos produced in radioactive decays in Earth's crust and mantle

Decay	Half life [10 ⁹ yr]	Maximum v Energy [MeV]	
238 U \rightarrow 206 Pb+8 4 He + 6e + 6 $\bar{\nu}_{e}$	4,47	3.26	
$^{232}\mathrm{Th} \rightarrow ^{208}\mathrm{Pb}\textbf{+}\textbf{8}~^{4}\mathrm{He}$ + 6e + 6 $\bar{\nu}_{\mathrm{e}}$	14.0	2.25	
${}^{40}{ m K} \rightarrow {}^{40}{ m Ca+e} + \bar{\nu_e}$ (89%)	1.28	1.311	
Detection via Inverse Beta Decay	: Det	ection Threshold: I.8 MeV	
$\overline{\nu}_{e} + p \rightarrow n + e^{+} (\rightarrow 2\gamma \text{ (511 keV)} $ n + H \rightarrow D + \gamma (2.2 MeV)	each)) — Th/	→ K not visible Th/U ratio 3.9 as from chondritic model	
Signature: Prompt signal: e ⁺ annih Delayed siganl: 2.2 MeV Neutron capture time: ~250 us	ilation γ		

Distribution of long-lived radioisotopes & radiogenic heat contribution to total balance Understand: Magnetic field, mantle convection, plate tectonics...

Geo Neutrinos: Results

	Events	Flux [TNU]	Expected [TNU]
Reactor	$52.7^{+9.2}_{-9.3}$	$96.6^{+20.5}_{-19.2}$	(87 ± 4) (after oscillations)
Geo	$23.7^{+7.4}_{-6.3}$	$43.5^{+14.5}_{-12.8}$	Model dependent
(Terrestrial Neutrino Unit = $1 \text{ ev/yr}/10^{32} \text{ protons}$)			

1,2,3 σ contours Null hypothesis rejected at 5.9 σ

Borexino Phase II: Goals & Prospects

⁷Be flux: Uncertainty ~3% & seasonal modulation
 pep flux: Evidence >3σ
 ⁸B flux: Reduced threshold and uncertainty
 pp flux: Possible update
 Geo-neutrinos: Update
 CNO flux: Improved limit & possibly first detection
 →Probe solar metallicity

Model	CNO neutrino flux [10 ⁸ cm ⁻² s ⁻¹]	Expected count rate in Borexino [cpd / 100 t]
Low Z SSM	3.76 ± 0.60	~3.7
High Z SSM	5.24 ± 0.84	~5.3
Δ	28	3%

Conclusions

- Almost full solar neutrino spectroscopy
- Leading limit on CNO neutrino flux
- Geo neutrino observation at 5.9 σ
- Made possible by unprecedentedly high radio-purity

Phase II: ~4.5 yr accumulated data + ~1.5 yr until start of SOX 6 yr of high quality data

- Phase II priority: Improved limit on CNO or measurement
- Huge effort made to control temperature & prevent convective motions
- Update of other solar neutrino fluxes & geo neutrinos

Additional Material

Thank you for your attention

Experimental Side

Laboratori Nazionali del Gran Sasso

Underground labs accessible via highway tunnel

Located straight under Monte L'Aquila Shielded by 3800 m.w.e. Reduced μ flux by ~10⁶

Borexino Backgrounds

Borexino's inner scintillator core is the radio-cleanest spot on Earth!

lsotope	Before Purification	After Purification
$^{14}C/^{12}C$	$(2.69 \pm 0.06) \cdot 10^{-18}$	unchanged
⁸⁵ Kr	$(30 \pm 5) \text{ cpd/100 t}$	\leq 5 cpd/100 t
²¹⁰ Po	~500 cpd/100 t	unchanged
²¹⁰ Bi	~40cpd/100 t	~20 cpd/100 t

 40 K, 39 Ar below detection limit 238 U, 232 Th $< 10^{-18}$ g/g (unprecedented) 222 Rn ~I cpd/I00 t

Borexino Calibration Campaigns

2008 – 2011: 3 internal and 2 external calibration campaigns

Energy calibration: MC tuned with several γ sources Resolution ~ 5%/ \sqrt{E} [MeV]

Position Reconstruction: Rn source in 182 positions Fiducial volume **uncertainty 2**% (pp-analysis)

Calibration shall be repeated before end of Phase II (2017)

Cosmogenic ¹¹C Reduction – Three Fold Coincidence

Cosmogenic ¹¹C Reduction – Three Fold Coincidence

Already applied in Phase I pep neutrino analysis (2012): 90% ¹¹C reduction at ~50% surviving exposure

Phase II goal: Same or better ¹¹C reduction at ~65% surviving exposure →Improved algorithms →Stable and continouus DAQ (duty cycle >95%)

Fit Strategy

CNO & ²¹⁰Bi

²¹⁰Po - Instabilities

Detector operations induce 210 Po contaminations \rightarrow No operations during Phase II data taking

Equilibrium still broken: Temperature changes induce ²¹⁰Po fluctuations →Possibly due to convective currents

Complete fluidodynamic simulation of currents ongoing

Controlling the Temperature

Thermal insulation of whole detector

- 20 cm mineral wool + reflective layer
- May to December 2015
- Active T controll installed to be activated at need

- 65 new calibrated T probes, internal and external installed
- 2 probes measuring T in Hall C
- 0.1 °C absolute accuracy
- 0.01 °C resolution stability

