<u>Recent multi-boson and vector-boson</u> <u>scattering measurements from ATLAS</u>

ICPPA - 2016

10th of October 2016

Fabian Spettel On behalf of the ATLAS Collaboration

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Outline and Motivation

- The production and scattering of vector bosons are sensitive to **physics beyond the Standard Model** (SM) via triple and quartic gauge boson vertices
 - > Couplings could deviate from SM \rightarrow anomalous triple (quartic) gauge couplings (aTGCs, aQGCs)
 - Search for new physics at the TeV scale
- Amplitudes of longitudinally polarized vector boson scattering (VBS) would violate unitarity at the TeV scale if no SM Higgs existed
 - > Experimental verification that **cross section is precisely regulated**
- WW* processes are an irreducible background to Higgs searches
 - Validation of Monte Carlo modeling
- Test of electroweak NLO corrections and of QCD calculations

Analyses covered in this talk:

- 1. $Z(\rightarrow ee/\mu\mu/\nu\nu)\gamma$ and $Z(\rightarrow ee/\mu\mu/\nu\nu)\gamma\gamma$ @ 8 TeV
- 2. Same sign WW($\rightarrow \ell \nu \ell \nu$)jj @ 8 TeV
- 3. WZ→ *lvll* @ 13 TeV
- 4. WW $\rightarrow \ell \nu \ell \nu + 1$ jet @ 8 TeV
- 5. WW →ℓvℓv @ 13 TeV
- 6. WWW→(ℓνℓνℓν) or (ℓνℓνjj) @ 8 TeV

Outline and Motivation

Anomalous Gauge Couplings

Non-abelian nature of electroweak theory allows interactions among gauge bosons:

- Effective Lagrangian formalism (aTGCs in this talk): •
 - Gauge invariant C and P conserving terms are added to the Lagrangian
 - Anomalous TGCs δ_i: н.
 - Charged (WWZ, WW_{γ}): $\delta_i = g_1 1$, $\kappa^{V} 1$, λ^{V} , with $V = Z/\gamma$ 0
 - Neutral (ZZZ, $Z_{\gamma\gamma}$, ZZ_{γ}): $\delta_i = h_{3}^{\vee}$, h_{4}^{\vee} , f_{5}^{\vee} , all δ_i vanish in the SM 0

Formfactor has to be introduced in order to prevent unitarity violation at high energies:

$$\delta_i \rightarrow \frac{\delta_i}{\left(1 + \hat{s} / \Lambda_{FF}\right)^n}$$

- Effective Field Theory (aQGCs in this talk):
 - SM is an effective theory valid for energies $E << \Lambda_{co}$
 - Beyond SM couplings are introduced via higher mass dimension operators:

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d=5}^{\infty} \frac{1}{\Lambda^{d-4}} \sum_{i} c_i \mathcal{O}_i^{(d)}$$

In the SM, all c_i are 0

Dimension 4	Dimension 6	Dimension 8	
WWWW, WWWZ	WWZ γ , WW $\gamma\gamma$	all VVVV	
$lpha_4, lpha_5$	$a_0/\Lambda^2,a_c/\Lambda^2$	$f_{S,i}/\Lambda^4 \; f_{M,i}/\Lambda^4, \; f_{T,i}/\Lambda^4$	

arXiv:hep-ph/0606118v2

$Z\gamma$ - and $Z\gamma\gamma$ Production

- Measurement of Z production in association with one or two photons
- Goals:
 - Measure production cross section in inclusive (N_{iets} ≥0) and exclusive (N_{iets} =0)
 - Set limits on:
 - **aTGCs** (ZZ_{γ} and Z_{$\gamma\gamma$}) from Z_{γ} cross section (N_{jets}=0)
 - **aQGCS** ($ZZ_{\gamma\gamma}$ and $Z_{\gamma\gamma\gamma}$) from $Z_{\gamma\gamma}$ cross section

- Ζ→**ℓℓ**γ(γ) :
 - Two opposite sign leptons and at least one (two) isolated photons, E_T>15 GeV
- Z→ννγ(γ) :
 - $E_{\rm T}^{\rm miss} > 100(110) \, {\rm GeV}$ and at least one (two) photons with E_T>130 (22) GeV
- Backgrounds:
 - Most important backgrounds are Z+jets and Z+γj(j), estimated from data

Phys. Rev. D 93, 112002

$Z\gamma$ - and $Z\gamma\gamma$ Production

- Measurement of Z production in association with one or two photons
- Goals:
 - Measure production **cross section** in **inclusive** (N_{iets}≥0) and **exclusive** (N_{iets}=0)
 - Set limits on:
 - **aTGCs** (ZZ γ and Z $\gamma\gamma$) from Z γ cross section (N_{iets}=0)
 - **aQGCS** (ZZ $\gamma\gamma$ and Z $\gamma\gamma\gamma$) from Z $\gamma\gamma$ cross section

Photon transverse energy from inclusive $e^+e^-\gamma$ events

Diphoton invariant mass from inclusive $e^+e^-\gamma\gamma$ events

- Ζ→**ℓℓ**γ(γ) :
 - Two opposite sign leptons and at least one (two) isolated photons, E_T>15 GeV
- $Z \rightarrow \nu \nu \gamma(\gamma)$:
 - $E_{\rm T}^{\rm miss} > 100(110) \,{\rm GeV}$ and at least one (two) photons with E_T>130 (22) GeV
- Backgrounds:
 - Most important backgrounds are Z+jets and Z+γj(j), estimated from data

Phys. Rev. D 93, 112002

Z_{γ} - and $Z_{\gamma\gamma}$ Production - aQGC Limits

• Limits on **aTGCs** derived for $h_{3,4}^{V}$ using **high** \mathbf{E}_{γ}^{T} events in the **exclusive** zero-jet **selection** (significant reduction of SM background)

 For limits on aQGCs using exclusive cross section with additional requirement m_{yy}>300 (200) GeV for ννγγ (ℓℓγγ)

7

$W^{\pm}W^{\pm}(\rightarrow \ell^{\pm}\nu\ell^{\pm}\nu)$ jj production @ 8 TeV

- First time ever measurement of W[±]W[±]jj production
- Sensitive to anomalous quartic gauge boson couplings
- Low contamination from strong production (EW / strong $\sim 1/1$)
- Electroweak vector boson scattering:

Electroweak non-VBS:

Strong Production:

- Signal Regions:
 - Inclusive signal region (EW + strong):
 - Two central same sign leptons with p_T >25 GeV and $|\eta|$ <2.5
 - At least two jets (p_T >30 GeV, $|\eta| < 4.5$, and m_{jj} >500 GeV) $m_{\ell\ell}$ >20 GeV, E_T^{Miss} >40 GeV,
 - Exclusive VBS region (EW only):
 - Additional requirement: $\Delta |y_{ij}| > 2.4$
 - Used to set limit on aQGCs

Phys. Rev. Lett. 113, 141803

8

$W^{\pm}W^{\pm}(\rightarrow \ell^{\pm}\nu\ell^{\pm}\nu)$ jj - Cross Section

Backgrounds:

Phys. Rev. Lett. 113, 141803

9

- Prompt leptons from WZ/γ^* , estimated from simulation
- Conversion background, e.g. W_γ, also estimated from simulation
- Non-prompt backgrounds, e.g. W+jets, ttbar, data-driven estimation

Inclusive:

- The observed (expected) significance of strong + EW production in inclusive region is 4.5 (3.4) σ
- $\sigma_{\text{Meas}}^{\text{fid}} = 2.1 \pm 0.5 \text{ (stat)} \pm 0.3 \text{ (syst) fb}$
 - $\sigma_{\text{Pred}}^{\quad \text{fid}}$ = 1.52 ± 0.11 fb (NLO in $\alpha_{S}^{\quad})$

VBS only:

- The significance of EW-only production amounts to 3.6 σ (observed) and 2.8 σ (expected)
- $\sigma_{\text{Meas}}^{\text{fid}} = 1.3 \pm 0.4 \text{ (stat)} \pm 0.2 \text{ (syst) fb}$

•
$$\sigma_{\text{Pred}}^{\text{fid}} = 0.95 \pm 0.06 \text{ fb} (\text{NLO in } \alpha_{\text{S}})$$

$W^{\pm}W^{\pm}(\rightarrow \ell^{\pm}\nu\ell^{\pm}\nu)$ jj - aQGCs

- Limits on **aQGCs** have been derived using VBS region
- Analysis was **updated recently** (preliminary results from July 2016) with an optimized event selection targeting improved constraints on aQGCs
- Several kinematic variables were tested

- Final choice: Cut on the transverse mass of the WW system, m_{ww}>400 GeV, additionally to the VBS selection
- Expected limits improve by around 35% with respect to previous publication

Submitted to PRD

Inclusive and differential WZ cross section @ 13 TeV

- Inclusive selection:
 - 3 leptons, 2 of same flavor and opposite sign and compatible with the Z mass, m_{τ}^{W} >30 GeV
- **Dominant backgrounds:** Z+Jets, Z_{γ} , ttbar (data-driven) and ZZ, ttbar+V (Powheg and Sherpa)
- Fiducial cross section: $\sigma_{W^{\pm}Z \rightarrow \ell' \nu \ell \ell}^{\text{fid.}} = 63.2 \pm 3.2 \text{ (stat.)} \pm 2.6 \text{ (sys.)} \pm 1.5 \text{ (lumi.) fb}$
- **Total cross section:** $\sigma_{W^{\pm}Z}^{\text{tot.}} = 50.6 \pm 2.6 \text{ (stat.)} \pm 2.0 \text{ (sys.)} \pm 0.9 \text{ (th.)} \pm 1.2 \text{ (lumi.) pb}$
- **NLO prediction for total cross section:** $\sigma_{W^{\pm}Z}^{\text{tot.}} = 42.4 \pm 0.8 \text{ (PDF)} \pm 1.6 \text{ (scale) pb}$

 Cross section in all channels consistently larger than NLO prediction (Powheg)

 Recent NNLO calculations from Grazzini et al. (arXiv:1604.08576) explain significant excess in total cross section:

$$\sigma_{W^{\pm}Z}^{\text{tot.}} = 48.2^{+1.1}_{-1.0} \text{ (scale) pb}$$

ATLAS-CONF-2016-043

Inclusive and differential WZ cross section @ 13 TeV

ATLAS-CONF-2016-043

- Differential cross sections as function of p_T^Z , m_T^{WZ} and jet multiplicity are measured Good description by MC is observed for p_T^Z and m_T^{WZ}
- Matrix element description (Sherpa NLO-0 merged with LO multi-leg 1,2,3 +PS) superior to NLO+PS approach (Powheg)

Dataset	Coupling	Expected	Observed
	Δg_1^Z	[-0.014; 0.029]	[-0.015; 0.030
8 and 13 TeV	$\Delta \kappa_1^{\dot{Z}}$	[-0.15; 0.21]	[-0.13; 0.24]
	λ^{Z}	[-0.013; 0.012]	[-0.014; 0.013

WW+1jet @ 8 TeV

Measurement:

- WW production in association with exactly one jet
- Earlier WW+0 jet cross section measurements showed excess compared to SM prediction
- Proposed solution was connected to logarithms arising from a selection on the number of jets (arXiv:1507.02565v2)
- Resummation at NNLL is now available
- WW+1j measurement confronts calculation with experimental data and extends earlier WW+0j measurement (arXiv:1603.01702)

Event Selection:

- Exactly two leptons (*eµ*-channel), N_{iets}(p_T>25 GeV)=1, b-jet veto
- Dominant background top quark production (data-driven)

Ratio of $\sigma_{WW}^{fid}(1j)/\sigma_{WW}^{fid}(0j)$ also in good agreement with SM

Results:

- $\sigma_{WW}^{\text{fid},1\text{-jet}} = 136 \pm 6 \text{ (stat)} \pm 14 \text{ (syst)} \pm 3 \text{ (lumi) fb}$
- Combination with WW+0j: $\sigma_{WW}^{\text{fid},\leq 1-\text{jet}} = 511 \pm 9 \text{ (stat)} \pm 26 \text{ (syst)} \pm 10 \text{ (lumi) fb}$
- $\sigma_{WW}^{\text{tot}} = 68.2 \pm 1.2(\text{stat}) \pm 3.4(\text{syst}) \pm 2.8(\text{theo}) \pm 1.4(\text{lumi}) \text{ pb}$
- All in good agreement with SM prediction (approx. NNLO)

WW cross section @ 13 TeV

-referred to as nNNLO+H

Measurement:

- Exclusive WW production cross section ($N_{jets}(p_T > 25 \text{ GeV}) = 0$) Same selection as on previous slide except for N_{jets} Fiducial cross section extracted by simultaneous fit of signal
- region and top and Drell-Yan control regions
- Significant progress in theoretical calculations:

•
$$\sigma_{WW \to e\mu}^{\text{fid}} = 529 \pm 20 \text{ (stat.)} \pm 50 \text{ (syst.)} \pm 11 \text{ (lumi.) fb}$$

 $\sigma^{\rm theo}_{WW\to e\mu} = 478 \pm 17 \,\rm fb$

$$\sigma_{WW}^{\text{theo}} = 128.4^{+3.5}_{-3.8} \, \text{pt}$$

Fiducial and total cross section in agreement with theory prediction

250 r Events / 5 GeV Data ATLAS Preliminary SM (sys stat) ww vs = 13 TeV, 3.16 fb⁻¹ 200 Top Quark WW→e[±]vµ[∓]v, SR Drell-Yan W+iets Diboson 150 100 50 Data / SM 20 40 60 80 100 120 Leading lepton p_ [GeV]

ATLAS-CONF-2016-090

14

WWW @ 8 TeV

- Never-before observed process
- $W^{\pm}W^{\mp}$ production sensitive to aTGCs (WWZ/ γ) and aQGCs (WWWW)
- Total expected cross section: $\sigma_{WWW}^{tot} = 241.5 \pm 0.1 \text{ (stat.)} + 10.3 \text{ (PDF)} \pm 6.3 \text{ (scale) fb}$

- Signal definition:
 - $\blacksquare WWW \rightarrow \ell \nu \ell \nu \ell \nu:$
 - Low branching ratio but very clean
 - Events are classified by number of same-flavour opposite-sign (SFOS) leptons (0,1,2)
 - WWW→ ℓvℓvjj:
 - Higher branching ratio, larger background contamination
 - Classified as eejj,eµjj and µµjj
- Main Backgrounds:
 - WZ/γ^* , $W\gamma$ +jets or $Z\gamma$ +jets (MC)
 - Lepton charge misidentification (data-driven)
 - Lepton fakes from jets

W

W

W

WWW @ 8 TeV

 Cut and count analysis used in the six signal regions (3 from each channel) to extract fiducial and total cross section (numbers not yet public - plots are)

- No significant deviation from SM is observed
- Significance is low (<1σ)
- Limited by statistics

16

Conclusion and Outlook

- Production of two or more gauge bosons **key processes** for understanding gauge structure of SM and to investigate **anomalous gauge couplings**
- So far no significant deviations from SM expectations have been observed
- More and more stringent limits are placed on aTGCs and aQGCs

- Still expecting 8 TeV results to be finalized (e.g. VBS WV→ℓvjj+2jets, ZZ→4ℓ / 2ℓ2v, WV→ ℓvjj resolved/boosted)
- 8 TeV analyses mostly limited by statistics
- At 13 TeV, already now 30 fb⁻¹ of integrated luminosity are available, compared to 21 fb⁻¹ recorded at 8 TeV
- Look forward to results from Run 2

Backup Slides

$Z\gamma$ - and $Z\gamma\gamma$ Production

Measured and predicted cross sections:

Channel	Measurement (fb)	MCFM Prediction (fb)	NNLO Prediction (fb)
	N _{jets}	≥ 0	
$e^+e^-\gamma$	$1510 \pm 15(\text{stat})^{+91}_{-84}(\text{syst})^{+30}_{-28}(\text{lumi})$		
$\mu^+\mu^-\gamma$	$1507 \pm 13(\text{stat})^{+78}_{-73}(\text{syst})^{+29}_{-28}(\text{lumi})$	1345_{-82}^{+66}	1483^{+19}_{-37}
$\ell^+\ell^-\gamma$	$1507 \pm 10 (\rm{stat})^{+78}_{-73} (\rm{syst})^{+29}_{-28} (\rm{lumi})$		
$\nu \bar{\nu} \gamma$	$68 \pm 4(\text{stat})^{+33}_{-32}(\text{syst}) \pm 1(\text{lumi})$	68.2 ± 2.2	$81.4_{-2.2}^{+2.4}$
	N _{jets}	= 0	
$e^+e^-\gamma$	$1205 \pm 14(\text{stat})^{+84}_{-75}(\text{syst}) \pm 23(\text{lumi})$		
$\mu^+\mu^-\gamma$	$1188 \pm 12 (\text{stat})^{+68}_{-63} (\text{syst})^{+23}_{-22} (\text{lumi})$	1191^{+71}_{-89}	1230^{+10}_{-18}
$\ell^+\ell^-\gamma$	$1189 \pm 9(\text{stat})^{+69}_{-63}(\text{syst})^{+23}_{-22}(\text{lumi})$		
ν <i>ν</i> γ	$43\pm2(\text{stat})\pm10(\text{syst})\pm1(\text{lumi})$	$51.0^{+2.1}_{-2.3}$	$49.21\substack{+0.61 \\ -0.52}$
	N _{jets}	≥ 0	
$e^+e^-\gamma\gamma$	$6.2^{+1.2}_{-1.1}(\text{stat}) \pm 0.4(\text{syst}) \pm 0.1(\text{lumi})$		
$\mu^+\mu^-\gamma\gamma$	$3.83^{+0.95}_{-0.85}(\text{stat})^{+0.48}_{-0.47}(\text{syst})\pm 0.07(\text{lumi})$	$3.70_{-0.11}^{+0.21}$	
$\ell^+\ell^-\gamma\gamma$	$5.07^{+0.73}_{-0.68}(\text{stat})^{+0.41}_{-0.38}(\text{syst})\pm 0.10(\text{lumi})$		
$\nu \bar{\nu} \gamma \gamma$	$2.5^{+1.0}_{-0.9}(\text{stat}) \pm 1.1(\text{syst}) \pm 0.1(\text{lumi})$	$0.737^{+0.039}_{-0.032}$	
	N _{jets}	= 0	
$e^+e^-\gamma\gamma$	$4.6^{+1.0}_{-0.9}(\mathrm{stat})^{+0.4}_{-0.3}(\mathrm{syst})\pm0.1(\mathrm{lumi})$		
$\mu^+\mu^-\gamma\gamma$	$2.38^{+0.77}_{-0.67}(\text{stat})^{+0.33}_{-0.32}(\text{syst})^{+0.05}_{-0.04}(\text{lumi})$	$2.91_{-0.12}^{+0.23}$	
$\ell^+\ell^-\gamma\gamma$	$3.48^{+0.61}_{-0.56}(\text{stat})^{+0.29}_{-0.25}(\text{syst}) \pm 0.07(\text{lumi})$		
$\nu \bar{\nu} \gamma \gamma$	$1.18^{+0.52}_{-0.44}(\text{stat})^{+0.48}_{-0.49}(\text{syst}) \pm 0.02(\text{lumi})$	$0.395^{+0.049}_{-0.037}$	

Z_{γ} - and $Z_{\gamma\gamma}$ Production - Cross Sections

Phys. Rev. D 93, 112002

- Differential cross sections depending on E_T^{γ} and on N_{iets} measured for Z_{γ}

Good description obtained by high order Monte Carlo, effects of NNLO clearly visible

WWW @ 8 TeV

- Limits on aQCD parameters $f_{S0}^{\prime}/\Lambda^4$ and $f_{S1}^{\prime}/\Lambda^4$ are set

