The AEğIS experiment at CERN

Germano Bonomi University of Brescia \& INFN Pavia
on behalf of the AEglS collaboration

The 2nd international conference on particle physics and astrophysics

10-14 October 2016

Milan Hotel

Overview
Bulletin n .1
Scientific Programme
Call for Abstracts
L View my Abstracts
Lubmit Abstract
Timetable (preliminary)
Participant List
Visas
Financial Supports
Conference Venue
Accommodation
Conference proceedings
Remote session via
AdobeConnect
The previous ICPPA
conference
Conference Poster
Support
\square icppa2016@mephi.ru

The 2nd International Conference on Particle Physics and Astrophysics

The 2nd International Conference on Particle Physics and Astrophysics (ICPPA-2016) will be held in Moscow, Russia, (from the 10th to 14th of October). The conference is organized by the National Research Nuclear University "MEPhI". The aim of the Conference is to promote contacts between scientists and to develop new ideas in fundamental research. Therefore we will bring together experts and young scientists working in experimental and theoretical aspects of nuclear physics, particle physics (including astroparticle physics), and cosmology. ICPPA2016 aims to present the most recent results in astrophysics and collider physics from the main experiments actively taking data as well as any upgrades for the methods of experimental particle physics. Furthermore, application». The working language of the conference is English.

Physics motivations

- The primary scientific goal of AEglS is the direct measurement of the gravitational acceleration (g) on antihydrogen in the earth field [test of the WEP]

Such measurement would represent the first precise direct determination of the gravitational effect on antimatter
Weak equivalence principle (WEP) -
Cornerstone of Einstein Theory of Relativity

$$
m_{i}=m_{g}
$$

Universality of free fall established by Galileo and Newton

- Unique behavior:

electric field:	gravitational field:
$\mathbf{F}=q \cdot \mathbf{E}$	$\mathbf{F}=m \cdot \mathbf{G}$
$\|\mathbf{E}\| \sim \frac{Q}{r^{2}}$	$\|\mathbf{G}\| \sim \frac{M}{r^{2}}$
$\|\mathbf{a}\| \sim q$	$\|\mathbf{a}\| \neq \mathcal{F}(m), a=$ const.

- Long term goal (phase 2): test of CPT (anti-hydrogen spectroscopy)

WEP for antimatter: why to test it

- Our attempts for a quantum theory of gravity typically result into new interactions which may violate the WEP (ex. Kaluza-Klein theory)

Int. J. Mod. Phys. D18, 251-273 (2009)

- Some open questions (like dark matter and baryogenesis) could benefit from a direct measurement

Astrophys. Space Sci. 334, 219-223 (2011)
JHEP 1502, 076 (2015)

- Some studies explicitly talk about "anti-gravity"
G. Chardin - Phys.Lett. B282 (1992) 256-262
- WEP violation is not excluded and no direct measurements are available ...
- Previous attempts:
- 1967: Fairbank and Witteborn tried to use positrons

Phys. Rev. Lett. 19, 1049 (1967)

- 1989: PS-200 experiment at CERN tried to use (4 K) antiprotons

Nucl. Instr. and Meth. B, 485 (1989)

- Both unsuccessful because of stray E and B fields

Highest precision reachable with neutral antimatter

- 2013: ALPHA experiment at CERN set limit on m_{g} / m_{i} for $\overline{\bar{H}}$
$m_{g} / m_{i}>110$ excluded at $95 \% \mathrm{CL}$
Nature Communications 4, 1785 (2013)

The AEgIS experiment @ CERN

The Antiproton Decelerator [AD - Antimatter factory @ CERN]

- At CERN antimatter studies are possible thanks to the Antiproton Decelerator (AD)
- $26 \mathrm{GeV} / \mathrm{c} p$ from PS used to produced $\overline{\mathrm{p}}$

- AD slows down $\overline{\mathrm{p}}$ to $\sim 100 \mathrm{MeV} / \mathrm{c}$ in a 100 s cycle
- Approximately $3 \times 10^{7} \bar{p}$ delivered each cycle to the experiments

The Antiproton Decelerator [AD - Antimatter factory @ CERN]

- AEgIS measurement overview
- Produce a beam of antihydrogen, let it fly and measure its "fall" [see details below]

- It would be the first precise (few \%) direct measurement for antimatter -> with no theoretical assumptions

Capture of antiprotons from the CERN-AD
Cooling of the trapped antiprotons

AEgIS procedure

Positronium ($\mathrm{e}^{+} \mathrm{e}^{-}$) production by e^{+}on SiO_{2}
Ps laser excitation to Rydberg state

Interaction of Ps* with the antiproton cloud

$$
\bar{p}+(P s)^{*} \rightarrow \bar{H}^{*}+e^{-}
$$

Positronium charge exchange reaction
[conceptually similar to a charge exchange technique based on Rydberg cesium performed by ATRAP C. Storry et al., Phys. Rev. Lett. 93 (2004) 26340 I]

ADVANTAGES

- Large cross section $\boldsymbol{\sigma} \propto\left(n p_{s}\right)^{4}$
- Narrow and well defined band of final states $\left(n_{H} \approx \sqrt{ } 2 n_{\mathrm{Ps}}\right.$, with a rms of few units)

Antihydrogen is then accelerated and fly toward the moiré deflectometer

Inertial sensing with classical atomic beams

Markus K. Oberthaler, Stefan Bernet, Ernst M. Rasel, Jörg Schmiedmayer, and Anton Zeilinger Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25 A-6020 Innsbruck, Austria

Moiré-deflectometer

FIG. 1. Principle of a Moiré deflectometer. The first two identical gratings collimate the originally undirected atoms into various directions. After a distance L corresponding to the distance between the first two gratings, an image of the collimation gratings is formed. At this position, a third identical probe grating is placed. Its translation along the indicated direction leads to a periodic modulation of the transmitted intensity.
new position-sensitive detector (to detect antihydrogen annihilation) upgraded version

position-sensitive

 detector

the AEgIS apparatus

1 T

The AEgIS experiment at CERN

The AEglS experiment at CERN

First results

AEgIS experiment is taking data (H production expected in 2016/17)

Small-scale test of the moiré deflectometer with $\overline{\mathrm{p}}$ was performed

gravity measurement proof of principle

Mini-moiré deflectometer

- distance 25 mm
- slit I $2 \mu \mathrm{~m}$, pitch $40 \mu \mathrm{~m}$, $100 \mu \mathrm{~m}$ thick
- pbar beam $\mathrm{E} \sim(100 \pm \mid 50) \mathrm{keV}$ traversing IT magnet - light reference:Talbot-Lau
- emulsion detector

gravity measurement proof of principle

- 146 antiprotons recorded (emulsion detector with I-2 um resolution!)

$\Delta \mathrm{y}=9.8 \pm 0.9($ stat $) \pm 6.4(\mathrm{syst}) \mu \mathrm{m}$
- $F=530 \pm 50 \mathrm{aN}$ (stat.) $\pm 350 \mathrm{aN}$ (syst.)
$B \sim 10$ G measured at the moiré position
- consistent with a B ~ 7.4 G

positronium production

Positronium (Ps) production by implanting e+ in a nanochanneled Si target
$e^{+} /$Ps converter

nanochanneled Si
(5-I 00 nm range, depth 2 um)
[S. Mariazzi et al., Phys. Rev. B 8 I (2010) 23548।]

Single Shot Positron Annihilation Lifetime Spectroscopy (SSPALS) measurement
[D. B. Cassidy et al. NIMB 508 (2007) I 338]
Positrons impinging:
(a) passive surface (MCP)
(b) nanochanneled Si

Comparing the two spectra and measuring the decay time of the signal showed that Ps was formed
[S. Aghion et al., NIMB 362 (2015) 86]Time (ns)

demonstration of Ps n=3 laser excitation

Positronium (Ps) excitation with laser pulse

- 3P excitation line found at $205.5+/-0.02 \mathrm{~nm}$
- excitation-ionisation efficiency ~ 15% (determined by ionisation by IR pulse)

Evidence for $n=15-18$
Rydberg excitation by
2-step laser excitation

$S(\%)=($ Area laser OFF-Area laser ON)/Area laser OFF

The AEgIS experiment at CERN

antiproton radial profiles
electrons compressed (4 MHz final RW step)

- electrons compressed (4 MHz final RW step)
- electrons initial
electron radial profile before (blue) and after (red) the compression (last step RW 4 MHz 0.5 V)

> electrons and antiprotons superimposed (scaled to match)
> - electrons
> (4 MHz final RW step)
> antiprotons
> (4 MHz final RW step)
> [splun que] funos aJn

- Observation of electron \& antiproton centrifugal separation
-> expected effect in our
experimental conditions
- Observation of antiproton ring decay through vortices

- AEglS aims at probing the WEP on antimatter
- No precise direct measurement so far
- AEgIS is taking data
- The working principle tested using antiprotons
- Antiprotons are routinely trapped and "manipulated" in the traps
- Positronium have been formed and excited to Rydberg states
- \bar{H} production expected to be achieved this/next year
- First gravity measurements planned for the next years
- Longer term plans also include $\mathrm{H}-\overline{\mathrm{H}}$ spectroscopy (in particular HFS)

