# Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at $\sqrt{s_{NN}}$ = 39 - 200 GeV at RHIC



**Svetlana Vdovkina** 

National Research Nuclear University (MEPhI)

The 2nd International Conference on Particle Physics and Astrophysics October 10-14, 2016



## Motivation

Collective flow allows to study properties of the *quark-gluon plasma*.

- ✓ Evaluation of the initial state geometry and transport properties
- ✓ High flow harmonics are more sensitive to transport properties
- $\checkmark$  The flow of identified particles  $\rightarrow$  hadronization mechanism
- $\checkmark$  Scaling properties can give insights on flow nature

## Highlights from highest energy at RHIC – 200 GeV



## Highlights from highest energy at RHIC – 200 GeV



Mass ordering is observed for  $p_T < 2$  GeV/c. Particles with the lowest mass (pions) have the highest flow

For the higher  $\textbf{p}_{T}$  the meson-baryon splitting is observed



$$KE_T = m_T - m_0$$

Scaling of the flow - different particles species follow the same curve

#### arXiv:1211.4009

## **RHIC collider, BNL**





STAR has wide azimuthal coverage ( $2\pi$ ), while PHENIX does not (two arms of  $\pi/2$ ) PHENIX have variety of detectors with big enough  $\eta$ -gap to central arms.





The difference between two data sets are less than 5-10%

a sets are

STAR: <u>Charged and strange hadron elliptic flow in Cu+Cu collisions at 62.4 and 200 GeV</u>, Phys. Rev. C 81 (2010) 44902 PHENIX: <u>Scaling properties of azimuthal anisotropy in Au+Au and Cu+Cu collisions at s(NN) = 200-GeV</u>, Phys.Rev.Lett. 98 (2007) 162301

## Difference in the results (v<sub>3</sub>)



Less than 10% difference between STAR(TPC) to PHENIX(RXN) results on the other hand

A huge difference (40-50%) between STAR TPC and FTPC data.

STAR: <u>Third Harmonic Flow of Charged Particles in Au+Au Collisions at 200 GeV</u>, Phys. Rev. C 88 (2013) 14904 PHENIX: <u>Scaling properties of azimuthal anisotropy in Au+Au and Cu+Cu collisions at s(NN) = 200 GeV</u>, Phys.Rev.Lett. 98 (2007) 162301

### v<sub>2</sub> at lower RHIC energies. Charged hadrons



No significant change of the flow at lower energies for charged hadrons

## v<sub>2</sub> particle-antiparticle difference.



The difference between flow of particles and antiparticles is increasing with energy decreasing. That cause the scaling violation at low energies.

```
arXiv:1509.08397 (2015)
```



Elliptic flow scales with number of quarks – different particle species have the similar trend. But agreement is worse for lower energies. The presence of scaling  $(v_n^{hadron} = n_q v_n^{quarks})$  shows that the flow is formed on the quarks level.

#### **v**<sub>3</sub> at lower RHIC energies. Charged hadrons



No significant changing of the flow at lower energies for charged hadrons



Scaling is also observed for  $v_3$  at 200 GeV and breaks at lower energies

J. Phys. G: Nucl. Part. Phys. 38 (2011) 124048

## Conclusions

A detailed comparison of RHIC experimental data for anisotropic flow harmonics has been presented:

-  $\text{KE}_{\text{T}}$  and NCQ scaling of  $\text{v}_2$  and  $\text{v}_3$  is observed at 200 GeV and broken at lower energies

• The difference of elliptic flow between particles and antiparticles is increasing at lower energy

• STAR and PHENIX have slightly different results for v<sub>2</sub> and v<sub>3</sub>

# Thank you for your attention!

## Backup Slides

## **Centrality dependence of flow harmonics**



Since overlapping region is mostly elliptic shape, the second harmonic –  $v_2$  – is the highest one

## **Baryon chemical potential**

