Event building for free-streaming readout in the CBM experiment

Korolko, M. Prokudin, Yu. Zaitsev NRC Kurchatov Institute, ITEP

Physics and interaction rates

- Some main physics observables
 - Charm: D-mesons, J/ψ , ψ' etc
 - Multistrange baryons: $\Xi^{-}(dss), \Xi^{+}(\bar{d}\bar{s}\bar{s}), \Omega^{-}(sss), \Omega^{+}(\bar{s}\bar{s}\bar{s})$
 - Rare QGP probes requiring the high interaction rate
 - Many of the probes are extremely difficult to trigger on
- CBM rate capability is limited by the setup not by the accelerator
 - 10⁵ for MVD if precise vertex reconstruction is required
 - 10⁶ for PSD if precise determination of event plane is needed
 - 10⁷ for all other detectors

CBM readout concept

- CBM is the first high interaction rate experiment going to run in a free streaming mode without trigger
 - Readout electronics will be self-tiriggered and deliver time-stamped data
 - Timeslice is all data acquired in a given period of time (more than 1 µs)
 - Timeslices can be threated separately from each other
 - Full reconstruction of a timeslice should be performed at individual computing unit
 - Node, processor or core
 - Interesting data should be saved
- Full reconstruction of all acquired data is available = complex cuts (identification quality, event topology, etc.) can be used for data selection
 - Example: high efficiency for D-mesons
- Timeslice should be sectioned into individual collisions (events) during the reconstruction
 - Event building problem

Event building

- Event building is a software algorithm in the CBM reconstruction chain
 - Different implementations for different colliding systems and energies
 - Physical objects (tracks, vertexes etc.) must be associated with events
 - Event association is not required for individual activated electronic channels (digis).
- Two approaches:
 - Digis for event building (simple method)
 - All event based reconstruction methods will work
 - Experience from previous experiments easily adopted
 - Can handle limited interaction rate (goal: up to 1 MHz)
 - Fallback solution
 - Track and vertex information for event building
 - Dedicated reconstruction algorithms for timeslices (e.g. 4D tracking)
 - A lot of affords to develop
 - Should work for high interaction rate
 - Final solution
- Only STS detector for simplicity
 - Include information from other subdetectors after getting some experience

Digi dynamics in time

UrQMD 10 AGeV Au+Au central collisions at 1 MHz. No delta from beam particles.

All events generate approximately the same number of digis.

Delta electrons can produce digis up to 1 µs after the collision of origin.

Digi dynamics in time

UrQMD 10 AGeV Au+Au mbias collisions at 1 MHz. No delta from beam particles. Same random seed in digitizer = same event positions.

Different number of digits per collision, some collisions don't produce digis at all!!!

Simple event builder

- Mbias gold-gold collisions is the worst case for simple event builder
 - Low number of tracks in peripheral collisions
 - Large number of digis produced by delta electrons tails from central collisions
 - Can't control collision centrality in the experiment
 - ... but can measure it after the collision.
- There is a possibility that modeled UrQMD collision can't be reconstructed
 - It produce no tracks in the detector acceptance ...
 - ... or just a few tracks, without possibility to reconstruct primary vertex and detect a collision for physical analysis.
 - Generator data alone is not enough to calculate denominator for event building efficiency for min. bias collisions.
 - First guess: At least 5 tracks in the detector acceptance is required for primary vertex reconstruction.

Simple event building procedure

- Event found:
 - Number of digis in a given period of time [t₀, t₀+Δt₂] (2 ns) is more than a threshold
 - All STS stations in the same period of time produced at least one digi
- All digis in period $[t_0-\Delta t_1, t_0+\Delta t_2+\Delta t_3]$ are associated with found event
- Algorithm does not search events in $[t_0 + \Delta t_2 + \Delta t_3, t_0 + \Delta t_2 + \Delta t_3 + \Delta t_4]$ time period
- $\Delta t_1 = 2$ ns, $\Delta t_2 = 2$ ns, $\Delta t_3 = 5$ ns, $\Delta t_4 = 8$ ns
- Initial guess for threshold is 2000 digis per 2 ns
 - Works perfect for central events

Good reconstructed event:

- More than 5 reconstructed tracks in event based reconstruction
- Difference between number of reconstructed long (>4 hits in STS) tracks in event based and real case less than 10 and 5%
- No single long track from other events
- Good reconstructable event contain at least 5 long tracks found in event based reconstruction.
- Threshold of 500 for 90% fraction of good events and 90% event formation efficiency for good events

Mbias events. Event building efficiency

Track and vertex information for event building

- Reconstruction of tracks and vertexes at timeslice level
 - 4D (x, y, z, t) tracking
 - Use extended state vector for track fitting $(x, y, t_x, t_y, q/p) \rightarrow (x, y, t_x, t_y, q/p, t)$
 - 4D vertex location
 - Fast! Need online reconstruction of Au+Au collisions at 10 MHz rate.
- All tracks born in the same location and the same time form a collision
 - Secondary vertexes require special care

Time-based Track Reconstruction

Event Building at IR = 10 MHz

Reconstructed tracks are grouped in events using histogramming:

- all tracks are filled in a time histogram with bin width of 1 ns
- neighbouring not empty bins are called an event
- gap of a 4 empty bins is a sign for event end

- 70 reco events are reconstructed one-to-one, 7 reco events are merged together.
- Primary tracks can be separated using primary vertex information.
- Search of only one primary vertex per event using KF Particle Finder package is currently implemented.
- Multi-vertex reconstruction is in progress.

Conclusions

- CBM is the first high interaction rate experiment going to run in a free streaming mode without trigger
- The readout electronics will work in self triggering mode
- Event building is a software procedure in CBM
- Simple event building based on digi dynamics in time should be up to 1 MHz interaction rate
 - The procedure will be updated to include information from other subdetectors
 - Include delta electrons produced by beam particle in target
- More complex algorithms rely on 4D track and vertex reconstruction are under development
 - Very preliminary results are presented