Pile-up background estimation in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector

<u>Student: V.Zharova</u> Supervisors: E. Soldatov, K. Kazakova

MEPhl@Atlas meeting 23/02/2024

Valeria Zharova (NRNU MEPhl)

Motivation And Goals

Motivation:

- To measure the parameters of the Standard Model (SM) to very high precision;
- The search of new physics predicted by the beyond SM (BSM) theories;
- Precise measurements of triple and quartic gauge couplings sensitive to BSM physics. One of the sensitive processes is $Z(vv)\gamma$ process.

<u>Goal</u>:

- To calculate integral and differential cross-sections for the main kinematic observables and compare the results with the theory predictions;
 - To obtain the strongest up-to-date limits on anomalous neutral triple gaugeboson couplings (aTGCs).

Purpose of the current study:

The background estimation procedure is extremely important. One of the backgrounds is the so-called pile-up background. The data-driven method* for estimating the pile-up background has several significant drawbacks, therefore an alternative overlay Monte-Carlo approach is considered.

*(more in back-up)

Valeria Zharova (NRNU MEPhl)

 $\mathbf{>}$

MEPhI@Atlas meeting 23/02/2024

(b) Beyond SM

Phase Space Definition

Signal: Z(vv) γ

Backgrounds: γ +jets, W(\rightarrow lv) γ , e $\rightarrow \gamma$, jet $\rightarrow \gamma$, Z(ll) γ , tt γ

 Event selection criteria for Zγ candidate events:

Selections	Cut Value
$E_{ m T}^{\gamma}$	$> 150 { m ~GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 130 { m ~GeV}$
Number of tight photons	$N_{\gamma}=1$
Lepton veto	$N_{\mu}=0,N_{e}=0$
au veto	$N_{ au}=0$
$E_{\rm T}^{\rm miss}$ significance	> 11
$ \Delta \phi(ec{p_{ ext{T}}}^{ ext{miss}},\gamma) $	> 0.6
$ \Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}},j_{1}) $	> 0.3

Studied background:

The background due to multiple pp interactions occurring within one intersection of bunches, the so-called pile-up background, is the source of events in which the Z boson can be associated with a photon from another pp collision.

 FixedCutLoose isolation working point is chosen:

FixedCutLoose working point				
Isolation	$E_{\rm T}^{\rm cone20} - 0.065 \cdot p_{\rm T}^{\rm cone20} < 0 {\rm GeV}$			
Track isolation	$p_{\mathrm{T}}^{\mathrm{cone20}}/p_{\mathrm{T}}^{\gamma} < 0.05$			

Signal region (SR): events pass selections and have a leading photon candidate that is isolated.

Valeria Zharova (NRNU MEPhI)

Overlay Monte-Carlo (OMC) Method

Strategy:

1. To estimate the number of pile-up events (referred to as A+B) in the diboson production (referred to as AB) the overlay Monte-Carlo (OMC) method uses separate A and B samples at the particle-level.

2. The overlay of B over A is performed by adding objects (photons, jets, etc.) from B into A;

3. The variables that define the AB final state are calculated in order to form a valid combined A+B event (referred to as OMC event). These variables are used to be checked against analysis selections;

4. The weight of the combined A+B event is determined as:

5. The number of A+B events at the particle-level is defined as the sum of OMC sample weights:

$$N_{
m A+B}^{
m gen} = \sum w_{
m A+B}$$

 $w_{\mathrm{A+B}} = rac{w_{\mathrm{A}}w_{\mathrm{B}}}{\langle w_{\mathrm{A}} \rangle \langle w_{\mathrm{B}} \rangle} rac{L\sigma_{\mathrm{A+B}}}{N_{\mathrm{OMC}}}$

6. The predicted number of pile-up events at the detector-level in the SR is estimated as follows:

$$N_{\rm A+B}^{\rm rec} = N_{\rm A+B}^{\rm gen} {\rm C}$$

*Correction factor (C) is defined as the reconstructed MC signal AB events passing all selections divided by the number of MC signal AB events at the particle-level within the fiducial region.

Valeria Zharova (NRNU MEPhI)

Method Application

- The Z boson (taken as A) and the photon (taken as B) components of Z+γ OMC events are taken from Zj and γ+j MC samples, respectively;
- The particle-level photon from γ+j process is being overlayed over random particle-level Z boson from Zj process until it becomes a part of Z+γ OMC event, that passes <u>the fiducial</u> region requirements;
- The procedure for such a combination of events is performed for every γ+j sample with a certain Zj sample in each of the MC simulation campaigns (MC16a, MC16d, MC16e);
- Iterating through all γ+j events requires significant computing resources, therefore only 100k events of every statistically large γ+j sample are used to form OMC sample;
- The total number of pile-up events at the particle-level is obtained by combining each γ+j sample sequentially with each Zj sample.

Definition of the fiducial region:

Category	Cut
Photons	Isolated, $E_{\mathrm{T}}^{\gamma} > 150 \; \mathrm{GeV}$
	$ \eta < 2.37 \; { m excl.} \; 1.37 < \eta < 1.52$
Jets	$ \eta < 4.5$
	$p_T > 50 { m GeV}$
	$\Delta R(jet,\gamma) > 0.3$
Lepton	$N_l=0$
Neutrino	$p_{\mathrm{T}}^{ uar{ u}} > 130~\mathrm{GeV}$
Events	Significance $E_{\mathrm{T}}^{\mathrm{miss}} > 11$
	$ \Delta \phi(ec{p}_{ m T}^{ m miss},\gamma) >0.6$
	$ \Delta \phi(ec{p}_{ m T}^{ m miss},j_1) >0.3$

The weight and the cross section of <u>the combined Z+γ event</u>:

Correction Factor

 The C-factor is parameterized by the transverse momentum of the photon, since the total number of pile-up events at the particle-level is summed from the number of pile-up events calculated for each γ+j sample.

<u>The estimates of correction factor obtained with Z(vv)γ MC</u> <u>signal for 4 intervals of the transverse momentum of the photon</u> [150; 280; 500; 1000; 2000] GeV:

$p_{\mathrm{T}}^{\gamma}, \Gamma$ эВ	MC16a	MC16d	MC16e
150 - 280	$0.8685 {\pm} 0.0018$	$0.8155 {\pm} 0.0017$	$0.8246 {\pm} 0.0014$
280-500	$0.853 {\pm} 0.005$	$0.818 {\pm} 0.004$	$0.822 {\pm} 0.004$
500-1000	$0.841 {\pm} 0.015$	$0.803 {\pm} 0.014$	$0.829 {\pm} 0.012$
1000-2000	$0.80{\pm}0.08$	$0.84{\pm}0.11$	$0.73 {\pm} 0.06$

The final estimate* of background events due to multiple pp collisions: $N_{Z+\gamma}^{SR}$ = 2.938 ± 0.018(stat.) events; *(more in back-up)

The statistical uncertainties come from:

- The uncertainty of the weights w_{γ} and w_{γ} of events used in the combination of γ +j samples with Zj samples;
- The uncertainty of C-factor;
- The uncertainty of SF-factors;

The fraction of pile-up events in relation to the data obtained using the OMC method is $(0.01257 \pm 0.00011)\%$.

Valeria Zharova (NRNU MEPhI)

Summary

- As a result the overlay Monte-Carlo method for the estimation of pile-up background in Z(vv)γ production was developed. The resulting estimate of the number of pile-up background events was derived using MC-simulated Zj and γ+j samples;
- In case of Z(vv)γ study the OMC method provides the estimate of the number of pileup background events with more statistical accuracy than the data-driven approach;
- The fraction of pile-up events in relation to the data obtained using the OMC method is (0.01257 ± 0.00011)%;
- Thereby, the pile-up background <u>looks negligible</u> for Z(vv)γ production in the SR.

Thank you for your attention!

Data-Driven Method Considered Scale-Factors

- The estimation of the background is based on the distribution of the longitudinal spacing $\Delta z = z_v^2 z_{vtx}^2$ between the identified primary vertex position $z_{\rm vtx} and$ the position $z_{\rm v}$ of the photon candidate;
- The shape for the pile-up component is obtained by assuming that the distributions of z_{vtx} and z_v are identical and uncorrelated;
- The $z_{vtx} and \, z_{v} distributions$ are described by a Gaussian distribution with σ =35 mm. Thus $\Delta z = z_v^2 - z_{vtx}^2$ also has a Gaussian distribution, with $\sigma \sim 50$ mm:

 $N^{|\Delta z| > 50mm} - N^{|\Delta z| > 50mm}$

The estimation of the pile-up background is performed in the tails of the Δz distribution (32% of pile-up events have $|\Delta z|$ >50 mm);

Th

The fraction of pile-up:
$$f_{\rm PU} = \frac{V_{\rm data} - V_{\rm single \, pp}}{0.32 \times N_{\rm data}}$$
$$N_{\rm single \, pp}^{|\Delta z| > 50mm} = {\rm SF}_1 \times {\rm SF}_2 \times N_{\rm MC}^{|\Delta z| > 50mm}$$
$$Increased \, area: \qquad f_{\rm PU} = \frac{N_{\rm data}^{|\Delta z| > 15mm} - {\rm SF}_1 \times {\rm SF}_2 \times N_{\rm MC}^{|\Delta z| > 15mm}}{0.76 \times N_{\rm data}}$$

 SF_1 – the ratio of events in data to events in Sherpa MC sample in the region of $|\Delta z| < 10$ mm; SF₂ = 1.48 ± 0.26 in the region of $|\Delta z| > 50$ mm; SF₂ = 1.27 ± 0.07 in the region of $|\Delta z|$ >15 mm.

Valeria Zharova (NRNU MEPhl)

MEPhI@Atlas meeting 23/02/2024

1/12 back-up

Requirement On Photons In Data-Driven Method

The longitudinal point of origin of the reconstructed photon z_y is not well measured in the most events. The uncertainty on z_y in this case is much greater than the average longitudinal spacing between the primary vertices of independent processes

To increase the accuracy of the recovered z_y, converted photons associated with <u>at least one track in a silicon detector</u> are used : singleSi, doubleSi, doubleSiTRT.

Valeria Zharova (NRNU MEPhI)

Results For $N_{jets} \ge 0$

- SF1= 4.46 ± 0.08
- |∆z|>15 mm: f_{PU}=(-15±3)%
- |Δz|>50 mm: f_{PU}=(-34±13)%

	$N_{\rm jets} \geqslant 0$	$N_{ m jets}>0$	$N_{ m jets}>1$	$N_{ m jets}{=}0$
$f_{PU}^{ \Delta z >15\mathrm{mm}},\%$	-15 ± 3	13.0 ± 1.7	17 ± 3	-29 ± 5
$f_{PU}^{ \Delta z >50\mathrm{mm}},\%$	-34 ± 13	12 ± 3	12 ± 4	-56 ± 19

• Δz distribution in data compared to Z(vv) γ QCD LO sample:

Valeria Zharova (NRNU MEPhI)

Results For N_{jets}> 0

- SF1= 4.24 ± 0.12
- |Δz|>15 mm: f_{PU}=(13.0±1.7)%
- |∆z|>50 mm: f_{PU}=(12±3)%

	Jees -	i jets > 0	ryjets – r	¹ v _{jets} —0
$f_{PU}^{ \Delta z >15\mathrm{mm}},\%$	-15 ± 3	13.0 ± 1.7	17 ± 3	-29 ± 5
$f_{PU}^{ \Delta z >50\mathrm{mm}},\%$	-34 ± 13	12 ± 3	12 ± 4	-56 ± 19

• Δz distribution in data compared to Z(vv) γ QCD LO sample:

Valeria Zharova (NRNU MEPhI)

Results For N_{jets}> 1

- SF1= 5.7 ± 0.3
- $|\Delta z| > 15 \text{ mm: } f_{PU} = (17 \pm 3)\%$
- |Δz|>50 mm: f_{PU}=(12±4)%

	$N_{\rm jets} \geqslant 0$	$N_{ m jets}>0$	$N_{ m jets}>1$	$N_{ m jets}{=}0$
$f_{PU}^{ \Delta z >15\mathrm{mm}},\%$	-15 ± 3	13.0 ± 1.7	17 ± 3	-29 ± 5
$f_{PU}^{ \Delta z >50\mathrm{mm}},\%$	-34 ± 13	12 ± 3	12 ± 4	-56 ± 19

• Δz distribution in data compared to Z(vv) γ QCD LO sample:

Valeria Zharova (NRNU MEPhI)

Results For N_{jets}= 0

- SF1= 4.593 ± 0.010
- |∆z|>15 mm: f_{PU}=(-29±5)%
- |Δz|>50 mm: f_{PU}=(-56±19)%

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$N_{\rm jets} \geqslant 0$	$N_{ m jets}>0$	$N_{ m jets} > 1$	$N_{ m jets}{=}0$
$f_{PU}^{ \Delta z > 50 \text{mm}}, \% \mid -34 \pm 13 \mid 12 \pm 3 \mid 12 \pm 4 \mid -56 \pm 19$	$f_{PU}^{ \Delta z >15\mathrm{mm}},\%$	-15 ± 3	13.0 ± 1.7	17 ± 3	-29 ± 5
	$f_{PU}^{ \Delta z >50\mathrm{mm}},\%$	-34 ± 13	12 ± 3	12 ± 4	-56 ± 19

• Δz distribution in data compared to Z(vv) γ QCD LO sample:

Valeria Zharova (NRNU MEPhI)

Data-Driven Method

The fraction of pile-up:

 $N_{\text{data excl. bkg}}^{|\Delta z| > 50mm}$ and N_{data} are the numbers of data excluding expected background events with $|\Delta z| > 50$ mm and without any requirements on $|\Delta z|$ respectively.

Similarly for Increased area:

$$f_{\rm PU} = \frac{N_{\rm data\ excl.\ bkg}^{|\Delta z| > 15\rm{mm}} - N_{\rm MC}^{|\Delta z| > 15\rm{mm}}}{N_{\rm data\ } \times 0.76}$$

Event yields for data, signal and expected background events without any requirements on $|\Delta z|$ used in pile-up background estimation.

 $\frac{\text{Данные}}{5920 \pm 80} \quad \frac{Z(\nu\bar{\nu})\gamma}{1884 \pm 4} \quad \frac{W\gamma, tt\gamma}{749 \pm 11} \quad \frac{e \rightarrow \gamma}{1989 \pm 9} \quad \frac{jet \rightarrow \gamma}{890 \pm 180} \quad \frac{\gamma+\text{jet}}{780 \pm 80} \quad \frac{Z(ll)\gamma}{55.1 \pm 1.9}$

The fraction of pile-up photons in data using the data-driven approach is found to be:

Region	Data excl. bkg.	$Z(\nu\bar{\nu})\gamma$	$f_{\rm PU},\%$
$ \Delta z > 15$	560 ± 170	633 ± 2	-2 ± 4
$ \Delta z > 50$	200 ± 130	302.6 ± 1.4	-5 ± 7

 Δz distribution in data excluding expected background events for events containing silicon conversions compared to Z(vv)y QCD NLO sample:

Nevertheless, the result is statistically poor!

Valeria Zharova (NRNU MEPhI)

γ+j And Z+j Samples In The OMC Method

The generator cross sections and the number of events pass the FR selections for the objects of the γ+jets and Zj processes in each of the campaigns

γ+jets

$\gamma+{\rm jets}$	$p_{\mathrm{T}}^{\gamma}, \mathrm{GeV}$	$\sigma_{\gamma}^{\rm gen},{\rm nb}$	${\rm N}_{\gamma}^{ m MC16a}$	${\rm N}_{\gamma}^{ m MC16d}$	$\mathrm{N}_{\gamma}^{\mathrm{MC16e}}$
361045	140-280 CVeto BVeto $% \left({{\rm{A}}} \right)$	2.4733e-1	5730863	7164490	9722954
361046	140-280 CFilterBVeto	2.4730e-1	3531410	4412930	5989939
361047	140-280 BFilter	2.4928e-1	3488508	4388563	5906211
361048	280-500 CVetoBVeto	1.3636e-2	3473982	4338889	5899403
361049	280-500 CFilterBVeto	1.3636e-2	1311955	1688373	2224485
361050	280-500 BFilter	1.3871e-2	1564949	1983444	2557681
361051	500-1000 CVetoBVeto	9.2491e-4	739530	923512	1255073
361052	500-1000 CFilterBVeto	9.2369e-4	555049	695226	943402
361053	500-1000 BFilter	9.4472e-4	110999	138837	193315
361054	1000-2000 CVetoBVeto	1.8485e-5	480505	601956	816193
361055	1000-2000 CFilterBVeto	1.8466e-5	240505	307718	413754
361056	1000-2000 BFilter	1.8978e-5	67307	86534	115429

Z + jets	$p_{\rm T}^{\rm Z},~{\rm GeV}$	σ_Z^{gen} , nb	$N_{\rm Z}^{\rm MC16a}$	$N_{\rm Z}^{\rm MC16d}$	$N_{\rm Z}^{\rm MC16e}$
364222	500-1000	3.0440e-4	136217	103989	171221
364223	> 1000	5.8558e-6	70715	70269	116466
366011	100-140 BFilter	1.0910e-1	20	25	74
366012	100-140 BFilter	4.5514e-3	76	82	233
366013	100-140 BFilter	1.2029e-3	72	92	248
366014	140-280 BFilter	5.1779e-2	3933	4913	13228
366015	140-280 BFilter	4.4678e-3	1257	1457	4303
366016	140-280 BFilter	1.3760e-3	688	801	2227
366017	280-500 BFilter	4.2467e-3	6939	6946	22675
366020	100-140 CFilterBVeto	1.0912e-1	20	22	32
366021	100-140 CFilterBVeto	4.5539e-3	100	107	152
366022	100-140 CFilterBVeto	1.2024e-3	115	113	163
366023	140-280 CFilterBVeto	5.1774e-2	2965	3696	4833
366024	140-280 CFilterBVeto	4.4680e-3	1576	1754	2682
366025	140-280 CFilterBVeto	1.3755e-3	1461	1512	2352
366026	280-500 CFilterBVeto	4.2483e-3	20247	25527	33481
366029	100-140 CVetoBVeto	1.0914e-1	10	22	26
366030	100-140 CVetoBVeto	4.5575e-3	72	80	111
366031	100-140 CVetoBVeto	1.2022e-3	101	121	161
366032	140-280 CVetoBVeto	5.1778e-2	19845	24856	33351
366033	140-280 CVetoBVeto	4.4714e-3	3857	4764	6465
366034	140-280 CVetoBVeto	1.3755e-3	3848	3858	6365
366035	280-500 CVetoBVeto	4.2499e-3	25435	31390	42087

The required cuts:

γ+jets:

Categ	gory	Cut	
Phote	ons I	solated, $E_{\mathrm{T}}^{\gamma} > 150 \text{ GeV}$	
	$ \eta <$	2.37 excl. $1.37 < \eta < 1.52$	2
Jet	S	$ \eta < 4.5$	
		$p_T > 50 { m GeV}$	
		$\Delta R(jet,\gamma) > 0.3$	
Lept	on	$N_l=0$	
		> Zj:	
	Category	Cut	
	Jets	$ \eta < 4.5$	
		$p_T > 50 { m GeV}$	
	Lepton	$N_l=0$	
	Neutrino	$p_{\mathrm{T}}^{ uar{ u}} > 130~\mathrm{GeV}$	
	Events	Significance $E_{\rm T}^{\rm miss} > 11$	

Valeria Zharova (NRNU MEPhI)

The Representativeness Of The y+jets Samples

Distribution of the number of events pass the required cuts for the 361045 γ +jets sample within MC16a/d/e

Distribution of the 100k events pass the required cuts for the 361045 y+jets sample within MC16a/d/e

Valeria Zharova (NRNU MEPhI)

Scale Factors

- To obtain cross sections within the certain phase space region, the scale factors SF_z and SF_y are applied to σ_z and σ_y respectively;
- Scale factor is defined as the number of the γ+j (Zj) events passing the required cuts divided by the number of events in the sample.

γ+jets

$\gamma + \text{jets}$	$p_{\mathrm{T}}^{\gamma},\mathrm{GeV}$	$\sigma_{\gamma}^{\rm gen}$, nb	$\mathrm{SF}_{\gamma}^{\mathrm{MC16a}}$	$\mathrm{SF}^{\mathrm{MC16d}}_{\gamma}$	$\mathrm{SF}_{\gamma}^{\mathrm{MC16e}}$
361045	140-280 CVetoBVeto	2.4733e-1	0.7511 ± 0.0004	0.7516 ± 0.0004	0.7514 ± 0.0003
361046	140-280 CFilterBVeto	2.4730e-1	0.7552 ± 0.0005	0.7553 ± 0.0005	0.7551 ± 0.0004
361047	140-280 BFilter	2.4928e-1	0.7626 ± 0.0005	0.7630 ± 0.0005	0.7626 ± 0.0004
361048	280-500 CVetoBVeto	1.3636e-2	0.9277 ± 0.0007	0.9276 ± 0.0006	0.9277 ± 0.0005
361049	280-500 CFilterBVeto	1.3636e-2	0.9304 ± 0.0011	0.9304 ± 0.0010	0.9302 ± 0.0009
361050	280-500 BFilter	1.3871e-2	0.9274 ± 0.0010	0.9274 ± 0.0009	0.9276 ± 0.0008
361051	500-1000 CVetoBVeto	9.2491e-4	0.9450 ± 0.0016	0.9450 ± 0.0014	0.9453 ± 0.0012
361052	500-1000 CFilterBVeto	9.2369e-4	0.9463 ± 0.0018	0.9468 ± 0.0016	0.9467 ± 0.0014
361053	500-1000 BFilter	9.4472e-4	0.945 ± 0.004	0.946 ± 0.004	0.944 ± 0.003
361054	1000-2000 CVetoBVeto	1.8485e-5	0.973 ± 0.002	0.9736 ± 0.0018	0.9736 ± 0.0016
361055	1000-2000 CFilterBVeto	1.8466e-5	0.975 ± 0.003	0.974 ± 0.003	0.974 ± 0.002
361056	1000-2000 BFilter	1.8978e-5	0.974 ± 0.005	0.974 ± 0.005	0.973 ± 0.004 .

> <u>Zj</u>

Z + jets	$p_{\mathrm{T}}^{\mathrm{Z}},\mathrm{GeV}$	σ_Z^{gen} , nb	SF_Z^{MC16a}	$\mathrm{SF}_\mathrm{Z}^\mathrm{MC16d}$	$\rm SF_Z^{MC16e}$
364222	500-1000	3.0440e-4	0.935 ± 0.007	0.938 ± 0.009	0.937 ± 0.007
364223	> 1000	5.8558e-6	0.962 ± 0.009	0.977 ± 0.017	0.970 ± 0.008
366011	100-140 BFilter	1.0910e-1	0.022 ± 0.005	0.016 ± 0.004	0.017 ± 0.003
366012	100-140B Filter	4.5514e-3	0.039 ± 0.005	0.038 ± 0.005	0.032 ± 0.003
366013	100-140 BFilter	1.2029e-3	0.056 ± 0.007	0.056 ± 0.007	0.052 ± 0.004
366014	140-280 BFilter	5.1779e-2	0.474 ± 0.016	0.460 ± 0.015	0.460 ± 0.009
366015	140-280 BFilter	4.4678e-3	0.313 ± 0.013	0.336 ± 0.013	0.319 ± 0.007
366016	140-280 BFilter	1.3760e-3	0.351 ± 0.017	0.353 ± 0.016	0.334 ± 0.009
366017	280-500 BFilter	4.2467e-3	0.82 ± 0.02	0.81 ± 0.02	0.814 ± 0.011
366020	100-140 CFilterBVeto	1.0912e-1	0.009 ± 0.002	0.005 ± 0.002	0.009 ± 0.002
366021	100-140 CFilterBVeto	4.5539e-3	0.022 ± 0.002	0.020 ± 0.002	0.0186 ± 0.0016
366022	100-140 CFilterBVeto	1.2024e-3	0.046 ± 0.006	0.031 ± 0.003	0.036 ± 0.003
366023	140-280 CFilterBVeto	5.1774e-2	0.53 ± 0.03	0.50 ± 0.02	0.51 ± 0.02
366024	140-280 CFilterBVeto	4.4680e-3	0.288 ± 0.012	0.290 ± 0.011	0.291 ± 0.009
366025	140-280 CFilterBVeto	1.3755e-3	0.297 ± 0.010	0.305 ± 0.011	0.294 ± 0.008
366026	280-500 CFilterBVeto	4.2483e-3	0.877 ± 0.017	0.869 ± 0.014	0.862 ± 0.014
366029	100-140 CVetoBVeto	1.0914e-1	0.0022 ± 0.0016	0.0049 ± 0.0016	0.0051 ± 0.0013
366030	100-140 CVetoBVeto	4.5575e-3	0.0105 ± 0.0014	0.0093 ± 0.0012	0.0099 ± 0.0012
366031	100-140 CVetoBVeto	1.2022e-3	0.031 ± 0.003	0.029 ± 0.003	0.028 ± 0.002
366032	140-280 CVetoBVeto	5.1778e-2	0.566 ± 0.012	0.562 ± 0.012	0.578 ± 0.011
366033	140-280 CVetoBVeto	4.4714e-3	0.309 ± 0.011	0.311 ± 0.008	0.307 ± 0.008
366034	140-280 CVetoBVeto	1.3755e-3	0.298 ± 0.007	0.294 ± 0.006	0.293 ± 0.005
366035	280-500 CVetoBVeto	4.2499e-3	0.917 ± 0.017	0.95 ± 0.03	0.915 ± 0.013 .

^{(*}***<u>*</u>

Valeria Zharova (NRNU MEPhI)

MEPhI@Atlas meeting 23/02/2024

10/12

Correction Factor

The C-factor is parameterized by the transverse momentum of the photon.

The estimates of correction factor obtained with $Z(vv)\gamma$ MC signal for 4 intervals of the transverse momentum of the photon [150; 280; 500; 1000; 2000] GeV for MC16a/d/e.

Results for each slice of $p_{\!\!\!\!\!\!_{T}}^{\gamma}$

$\gamma + jets$	MC16a	MC16d	MC16e
361045	$(20.6 \pm 0.5) \cdot 10^{-2}$	$(38.8 \pm 0.8) \cdot 10^{-2}$	$(49.6\pm0.8)\cdot10^{-2}$
361046	$(20.7\pm0.5)\cdot10^{-2}$	$(39.0\pm0.8)\cdot10^{-2}$	$(49.9\pm0.9)\cdot10^{-2}$
361047	$(21.1\pm0.5)\cdot10^{-2}$	$(39.7 \pm 0.8) \cdot 10^{-2}$	$(50.8\pm0.9)\cdot10^{-2}$
361048	$(14.1\pm0.3)\cdot10^{-3}$	$(26.4 \pm 0.5) \cdot 10^{-3}$	$(33.8\pm0.5)\cdot10^{-3}$
361049	$(14.1\pm0.3)\cdot10^{-3}$	$(26.5\pm0.5)\cdot10^{-3}$	$(33.9\pm0.5)\cdot10^{-3}$
361050	$14.3\pm 0.3)\cdot 10^{-3}$	$(26.9\pm0.5)\cdot10^{-3}$	$(34.4\pm0.5)\cdot10^{-3}$
361051	$(9.7\pm 0.2)\cdot 10^{-4}$	$(18.2\pm0.3)\cdot10^{-4}$	$(23.3\pm0.4)\cdot10^{-4}$
361052	$(9.7\pm 0.2)\cdot 10^{-4}$	$(18.3\pm 0.3)\cdot 10^{-4}$	$(23.3\pm0.4)\cdot10^{-4}$
361053	$(9.9\pm 0.2)\cdot 10^{-4}$	$(18.7 \pm 0.4) \cdot 10^{-4}$	$(23.8\pm0.4)\cdot10^{-4}$
361054	$(19.9\pm0.4)\cdot10^{-6}$	$(37.6 \pm 0.7) \cdot 10^{-6}$	$(48.1\pm0.8)\cdot10^{-6}$
361055	$(20.0 \pm 0.4) \cdot 10^{-6}$	$(37.6\pm0.7)\cdot10^{-6}$	$(48.0\pm0.8)\cdot10^{-6}$
361056	$(20.5\pm0.5)\cdot10^{-6}$	$(38.6\pm0.8)\cdot10^{-6}$	$(49.3\pm0.8)\cdot10^{-6}$
Integral	$0.669 {\pm} 0.008$	$1.261 {\pm} 0.014$	1.611 ± 0.015

The estimates of the number of pile-up events at the <u>particle-level</u> for each γ+jets sample, obtained by sequential combination with each Zj sample. The values of the integrated luminosity L and <µ> the average number of pp inelastic collisions per bunch crossing for each campaign:

The reconstruction level:

$\gamma + jets$	MC16a	MC16d	MC16e
361045	$(17.9 \pm 0.4) \cdot 10^{-2}$	$(31.6 \pm 0.7) \cdot 10^{-2}$	$(40.9\pm0.7)\cdot10^{-2}$
361046	$(18.0\pm0.4)\cdot10^{-2}$	$(31.8\pm0.7)\cdot10^{-2}$	$(41.1\pm 0.7)\cdot 10^{-2}$
361047	$(18.3\pm0.4)\cdot10^{-2}$	$(32.4\pm0.7)\cdot10^{-2}$	$(41.9\pm0.7)\cdot10^{-2}$
361048	$(12.0\pm0.3)\cdot10^{-3}$	$(21.6\pm0.4)\cdot10^{-3}$	$(27.8 \pm 0.5) \cdot 10^{-3}$
361049	$(12.0\pm0.3)\cdot10^{-3}$	$(21.7 \pm 0.4) \cdot 10^{-3}$	$(27.9\pm0.5)\cdot10^{-3}$
361050	$(12.2 \pm 0.3) \cdot 10^{-3}$	$(22.0 \pm 0.4) \cdot 10^{-3}$	$(28.3\pm 0.5)\cdot 10^{-3}$
361051	$(8.1 \pm 0.2) \cdot 10^{-4}$	$(14.6\pm0.4)\cdot10^{-4}$	$(19.4\pm0.4)\cdot10^{-4}$
361052	$(8.1 \pm 0.2) \cdot 10^{-4}$	$(14.7\pm0.4)\cdot10^{-4}$	$(19.4\pm0.4)\cdot10^{-4}$
361053	$(8.3 \pm 0.2) \cdot 10^{-4}$	$(15.0\pm0.4)\cdot10^{-4}$	$(19.7\pm0.4)\cdot10^{-4}$
361054	$(16.0\pm1.7)\cdot10^{-6}$	$(3.2 \pm 0.4) \cdot 10^{-5}$	$(3.5\pm 0.3)\cdot 10^{-5}$
361055	$(16.0\pm1.7)\cdot10^{-6}$	$(3.2\pm0.4)\cdot10^{-5}$	$(3.5\pm 0.3)\cdot 10^{-5}$
361056	$(16.5\pm1.7)\cdot10^{-6}$	$(3.3 \pm 0.4) \cdot 10^{-5}$	$(3.6\pm 0.3)\cdot 10^{-5}$
Integral	0.581 ± 0.007	1.028 ± 0.011	1.329 ± 0.012

	MC16a	MC16d	MC16e
L, pb^{-1}	36646.74	44630.6	58791.6
$\langle \mu \rangle$	23.7	37.8	36.1

The inelastic cross section σ_{inel} = 80 mb

The bottom line corresponds to the total values of the number of pile-up events at the particle-level and at the reconstruction level within the MC16a/d/e campaigns

Valeria Zharova (NRNU MEPhl)