Inclusive Z(v̄ν)γ full Run2 analysis report

Katerina Kazakova 1, 2

on behalf of the ZnunuGamma group

¹ National Research Nuclear University MEPhI, Moscow ² Joint Institute for Nuclear Research, Dubna

MEPhI@Atlas meeting 05/04/2024

Motivation

Standard Model:

- A higher branching ratio of the neutral decay channel in comparison to the charged lepton decays of Z boson and better background control in comparison with the hadronic channel.
- \Rightarrow Previous study of this channel 36.1 fb⁻¹ data. Full Run2 statistics (140 fb⁻¹) \rightarrow increase of measurement accuracy (expect the experimental sensitivity to increase by a factor of 2).

Goal:

To obtain integrated and differential cross-sections for 10 observables: E_T^{γ} , p_T^{miss} , N_{jets} , η_{γ} , $\Delta \phi(\gamma, p_T^{miss})$, $\Delta \phi(j_1, j_2)$, $\Delta R(Z, \gamma)$, p_T^{j1} , p_T^{j2} , $m_T^{Z\gamma}$ and compare the results with the theory predictions including NNLO QCD and NLO EWK corrections.

Glance: ANA-STDM-2018-54

Beyond SM:

- To obtain the strongest up-to-date limits on anomalous neutral triple gauge-boson couplings (aTGCs) using vertex functions and EFT formalisms.
- \Rightarrow Possible combination of the EFT limits between Zy and ZZ.

Selection optimisation

- Topology: high-energetic photon and MET.
- Multivariate (MV) method of the selection optimization takes into account the signal significance S as a function of the threshold values of the variables:

$$S = N_{\text{signal}} / \sqrt{N_{\text{signal}} + N_{\text{bkg}}}$$

The result of the MV optimization process is a set of threshold values for the variables that yield the maximum S.

Selections	Cut Value	
$E_{ m T}^{ m miss}$	> 130 GeV	
$\hat{E}_{\mathrm{T}}^{\gamma}$	> 150 GeV	
Number of tight isolated photons	$N_{\gamma} = 1$	T I
Lepton veto	$N_{\rm e} = 0, N_{\mu} = 0$	The
au veto	$N_{\tau} = 0$	significance is increased
$E_{ m T}^{ m miss}$ significance	> 11	by 3%
$ \Delta\phi(\gamma,{ec p}_{ m T}^{ m miss}) $	> 0.6	Dy 070
$ \Delta\phi(j_1,ec{p}_{ m T}^{ m miss}) $	> 0.3	

Beam-induced background suppression: $|\Delta z|$ < 250 mm

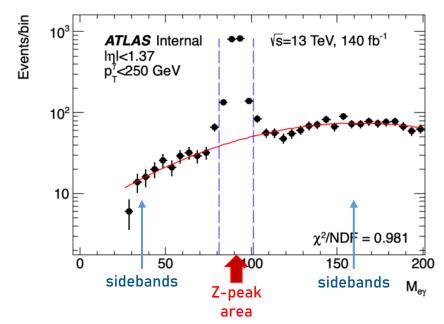
The optimisation procedure is done for three different photon isolation working points FixedCutTight, FixedCutTightCaloOnly and FixedCutLoose.

	Signal	
$Z(\nu\nu)\gamma QCD$	10711 ± 8	13438±9
$Z(\nu\nu)\gamma EWK$	166.3 ± 0.3	300.5 ± 0.4
Total signal	10878 ± 8	13738 ± 9
	Background	
Wγ QCD	3310 ± 21	6393±28
$W\gamma$ EWK	109.4 ± 0.6	293.5±1.1
tt, top	177 ± 5	1991±18
$W(e\nu)$	3591 ± 487	7934 ± 540
$tt\gamma$	178 ± 3	746 ± 6
γ +j	8123 ± 82	63766±211
Zj	415 ± 21	635 ± 25
$Z(ll)\gamma$	211 ± 4	399 ± 5
$\mathrm{W}(au u)$	640 ± 69	2222±127
Total bkg.	16779 ± 499	84380±595
Stat. signif.	65.4 ± 0.6	43.86±0.14

Background composition

Percentage of the data

Background composition for $Z(v\overline{v})\gamma$:


- 35% γ + jets fit to data in additional CR based on MET significance (shape from MC);
- 15% $W(\rightarrow lv)\gamma$ and $tt\gamma$ fit to data in additional CR based on N leptons (shape from MC);
- 11% $e \rightarrow \gamma$ fake-rate estimation using Z-peak (tag-n-probe) method;
- 9% jet $\rightarrow \gamma$ ABCD method based on photon ID and isolation (shape from Slice Method);
- 0.9% $Z(l^+l^-)\gamma$ via MC;

$e \rightarrow \gamma$ misID background: Z-peak method

- Background estimation method:
 - 1. Estimating e ightarrow γ fake-rate as $rate_{e
 ightarrow\gamma}=rac{(N_{e\gamma}-N_{bkg})}{(N_{ee}-N_{bkg})}$,

where $N_{e\gamma}$, N_{ee} – number of ee and e γ events in Z-peak mass window (M_Z -10 GeV, M_Z +10 GeV), N^{bkg} – background in Z-peak mass window extrapolated from sideband with exponential pol1 or pol2 fit.

Additional Wy background rejection: E_T^{miss} < 40 GeV.

ey pair selection:

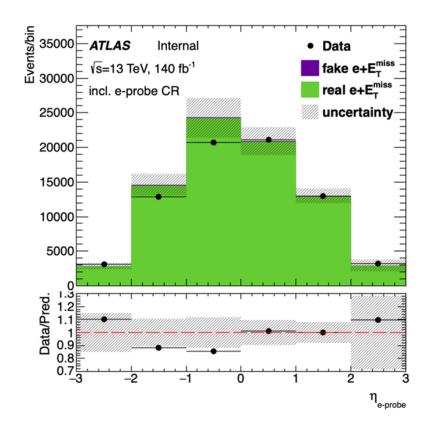
signal region photon with $p_T>150$ GeV (probe), selected Tight electron with $p_T>25$ GeV (tag)

ee pair selection:

selected electron with $p_T > 150$ GeV (probe), selected opposite sign Tight electron with $p_T > 25$ GeV (tag)

Since fake rate depends on p_T and η (see backup), three regions are considered: $/\eta/<1.37$, $p_T<250~GeV$ and $/\eta/<1.37$, $p_T>250~GeV$ and $1.52</\eta/<2.37$ (flat distribution on p_T)

- 2. Building e-probe control region (CR): signal region with selected Tight electron with p_T >150 GeV instead of photon.
- 3. Scaling data distributions from e-probe CR by fake rate value.


e — γ misID background: systematics

- Systematics on fake-rate estimation (ascending contribution):
- \Rightarrow Z peak mass window variation (varies from 0.3% to 0.7%).
- \Rightarrow Background under Z peak evaluation (varies from 3% to 14%).
- Difference between "real fake rate" in Z(ee) MC and tag-andprobe method performed on Z(ee) MC (varies from from 3% to 15%).

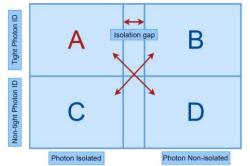
	150 <e<sub>⊤[∨] <250 GeV</e<sub>	E _T > 250 GeV
0< η <1.37	0.0234±0.0006±0.0010	0.0193±0.0013±0.0038
1.52< η <2.37	0.0714±0.0019±0.0074	

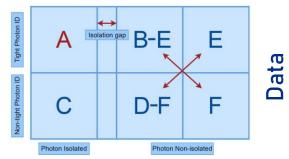
First uncertainty is statistical, second is systematical.

Total systematics on fake-rate does not exceed 20%

Background estimation result:

Signal region $2608 \pm 11 \pm 162$


Total syst. on the background yield: 6%


- A pair of photons from the decay of neutral mesons (typically a π^0), contained in hadronic jets, can give a signature of EM shower similar to a single isolated photon signature of the electromagnetic (EM) shower.
- Background is estimated from data using 2D-sideband method: <u>photon isolation and identification</u>
 variables are used to construct the sidebands.
- Correlation is measured in data and MC by $R=rac{N_{
 m A}N_{
 m D}}{N_{
 m B}N_{
 m C}}$
- FixedCutLoose isolation working point is used with iso gap of 2 GeV

R factor	loose'2	loose'3	loose'4	loose'5
MC	1.1 ± 0.2	1.1 ± 0.2	1.1 ± 0.2	1.4 ± 0.3

Isolation should not correlate with nontight ID!

$$\frac{N_{\rm A}^{
m jet
ightarrow \gamma}}{N_{
m B}} = \frac{N_{
m C}}{N_{
m D}}$$

Cut, GeV	loose 2	loose'3	loose'4	loose'5
		MC		
4.5	1.18 ± 0.19	1.15 ± 0.16	1.08 ± 0.13	1.11 ± 0.13
7.5	1.12 ± 0.14	1.16 ± 0.13	1.10 ± 0.11	1.11 ± 0.11
10.5	1.15 ± 0.14	1.16 ± 0.13	1.11 ± 0.11	1.12 ± 0.11
		Data-driver	1	
4.5	0.99 ± 0.11	1.05 ± 0.11	1.07 ± 0.09	1.09 ± 0.09
7.5	1.13 ± 0.11	1.09 ± 0.09	1.06 ± 0.08	1.05 ± 0.08

	$R_{\rm data}$	R'	R
loose'2	0.99 ± 0.11	1.18 ± 0.19	1.1 ± 0.2
loose'3	1.05 ± 0.11	1.15 ± 0.16	1.1 ± 0.2
loose'4	1.07 ± 0.09	1.08 ± 0.13	1.1 ± 0.2
loose'5	1.09 ± 0.09	1.11 ± 0.13	1.4 ± 0.3

Resulting R for MC and data

R factor	loose'2	loose'3	loose'4	loose'5
MC	0.99 ± 0.15	1.05 ± 0.11	1.07 ± 0.10	1.1 ± 0.3

 $1.00 \pm 0.10 \ 0.99 \pm 0.09 \ 0.96 \pm 0.07 \ 0.96 \pm 0.07$ In B-E, E, D-F and F

10.5

jet → γ misID background: uncertainties

Statistical uncertainty:

- \Rightarrow The event yields of four regions in data and non jet $\rightarrow \gamma$ background are varied by ±1 σ independently (9%).
- ⇒ The statistical uncertainty on the signal leakage parameters is negligible. Total statistics: 9%.

Systematic uncertainty:

- Anti-tight definition and isolation gap choice variations of ABCD regions determination by ±1σ changes in data yield (14%).
- \Rightarrow The deviations from the nominal value from varying R factor by \pm 0.10 (10%).
- ⇒ Uncertainty coming from the signal leakage parameters is obtained via using different generators and parton shower models (0.7%).

Central value	1765^{+164}_{-160}
Loose'2	+240
Loose'4	+85
Loose'5	-55
Isolation gap +0.3 GeV	-60
Isolation gap −0.3 GeV	+33

Central value	1765^{+164}_{-160}
$R + \Delta R$	+180
$R - \Delta R$	-178

Signal leakage parameters	MadGraph+Pythia8, Sherpa 2	2.2 MadGraph+Pythia8, MadGraph+Pythia8	Relative deviation
$c_{ m B}$	$(278 \pm 4) \cdot 10^{-5}$	$(47 \pm 2) \cdot 10^{-4}$	7%
$c_{\mathbf{C}}$	$(3205 \pm 14) \cdot 10^{-5}$	$(330 \pm 6) \cdot 10^{-4}$	3%
$c_{ m D}$	$(178 \pm 11) \cdot 10^{-6}$	$(39 \pm 5) \cdot 10^{-5}$	120%
$jet \rightarrow \gamma$ estimation	1765	1752	0.7%

- \Rightarrow The iso/ID uncertainty on reconstruction photon efficiency $δ_{eff}$ iso/ID (1.3%). Total systematics: 17%.
- Total number of jet $\rightarrow \gamma$ events: 1770 ± 160 ± 300. Z(vv)+jets and multi-jet MC predicts 2000 ± 1300 events.

jet → γ misID background: slice method

- The jet $\rightarrow \gamma$ background shape cannot be properly modeled with MC. For this reason, the shape of jet $\rightarrow \gamma$ background is estimated via slice method.
- The proposed slice method splits the phase space into four orthogonal regions based on kinematic cuts and the photon isolation.
- The non-isolated regions are split into a set of successive intervals (slices) based on the photon isolation.
- Four isolation slices are chosen: [0.065, 0.090, 0.115, 0.140, 0.165].

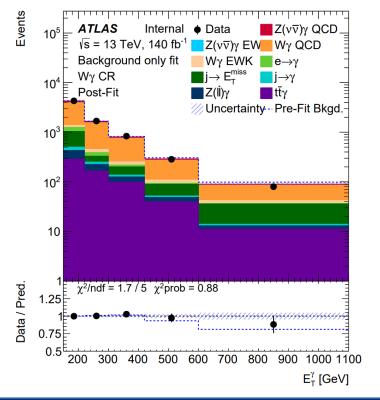
$$N_{\mathrm{CR1(i)}}^{jet \to \gamma} = N_{\mathrm{CR1(i)}}^{\mathrm{data}} - N_{\mathrm{CR1(i)}}^{\mathrm{Z}(\nu\bar{\nu})\gamma} - N_{\mathrm{CR1(i)}}^{\mathrm{bkg}}$$

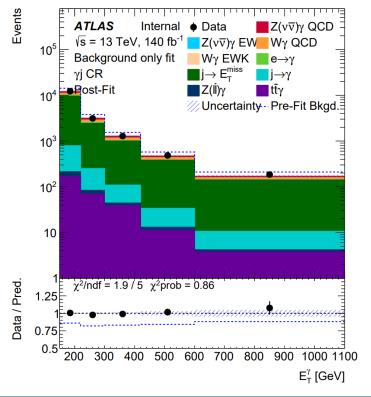
$$H_{jet \to \gamma}^{[0.A,0.B]} = H_{\mathrm{data}}^{[0.A,0.B]}[X] - H_{\mathrm{sig}}^{[0.A,0.B]}[X] - H_{\mathrm{bkg}}^{[0.A,0.B]}[X]$$

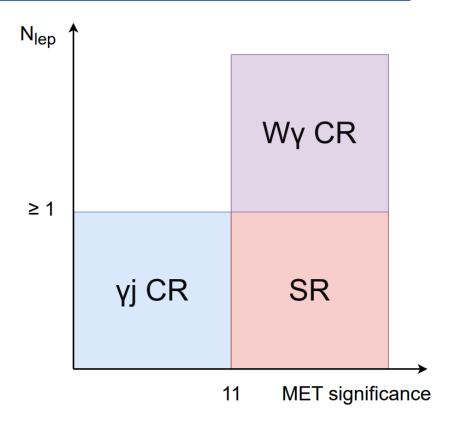
CR2 CR1 F_Tmiss < 130 GeV or ETmiss > 130 GeV ET^{miss} sig. < 8 or ET^{miss} sig. > 11 $|\Delta \varphi(p_T^{miss}, \gamma)| < 0.6$ or $|\Delta \varphi(p_T^{miss}, \gamma)| > 0.6$ $|\Delta \varphi(p_T^{miss}, j_1)| > 0.3$ $|\Delta \varphi(p_T^{miss}, j_1)| < 0.3$ **Tight** Tight Non-isolated Non-isolated ETmiss > 130 GeV E_T^{miss} < 130 GeV or E_T^{miss} sig. < 8 or ETmiss sig. > 11 $|\Delta \varphi(p_T^{miss}, \gamma)| < 0.6$ or $|\Delta \varphi(p_T^{miss}, \gamma)| > 0.6$ $|\Delta \varphi(p_T^{miss}, j_1)| < 0.3$ $|\Delta \varphi(p_T^{miss}, j_1)| > 0.3$ Tight Tight Isolated Isolated

Kinematic selections

$$\Delta^{CR2}[X] = \frac{1}{2} \left(\frac{H^{[0.065,0.09]}_{jet \to \gamma}[X] - H^{[0.115,0.14]}_{jet \to \gamma}[X]}{2} + \frac{H^{[0.09,0.115]}_{jet \to \gamma}[X] - H^{[0.14,0.165]}_{jet \to \gamma}[X]}{2} \right)$$

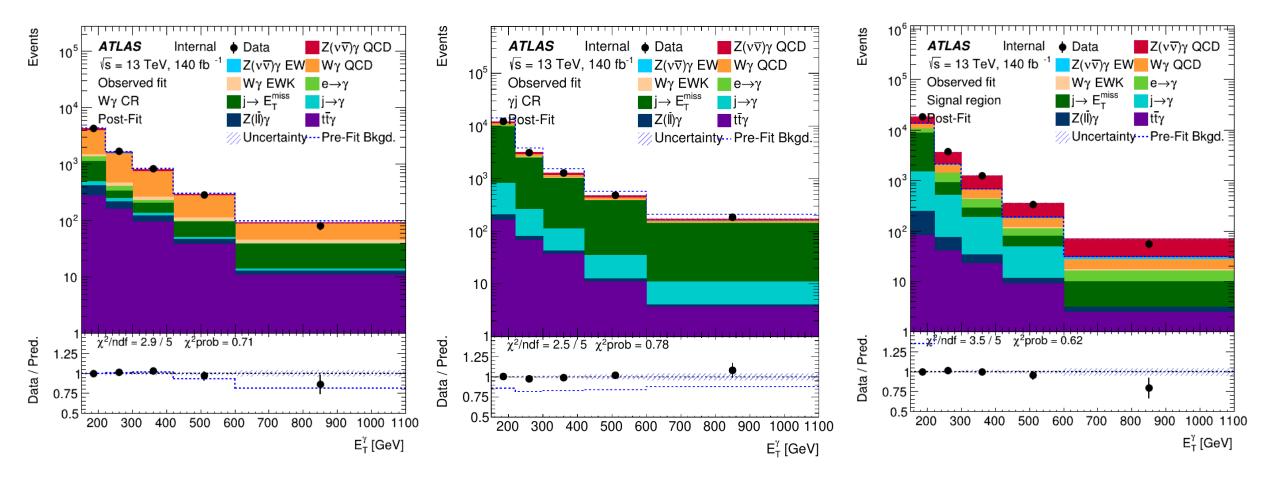



The jet
$$\rightarrow$$
 γ shape in the SR: $H_{jet \rightarrow \gamma}^{SR} = H_{jet \rightarrow \gamma}^{[0.065,0.09]}[X] + \Delta^{CR2}[X]$


The correction term

- Three free parameters are introduced in the combined fit: a signal strength parameter $\mu(Zg)$ and two normalization factors $\mu(Wg)$ and $\mu(\gamma j)$ used to scale the yields of $W(lv)\gamma$ and $t\gamma$ and $t\gamma$ and $t\gamma$ are processes.
- ⇒ The binned likelihood function used in the analysis is:

$$\mathcal{L}(\mu, \theta) = \prod_{r}^{\text{regions}} \left[\prod_{i}^{\text{bins} \in r} \text{Pois}(N_i^{\text{data}} | \mu v_i^s \eta^s(\theta) + v_i^b \eta^b(\theta)) \right] \cdot \prod_{i}^{\text{nuis. par.}} \mathcal{L}(\theta_i)$$



Results of background only fit:

$$\mu(Wg) = 0.93 \pm 0.13$$

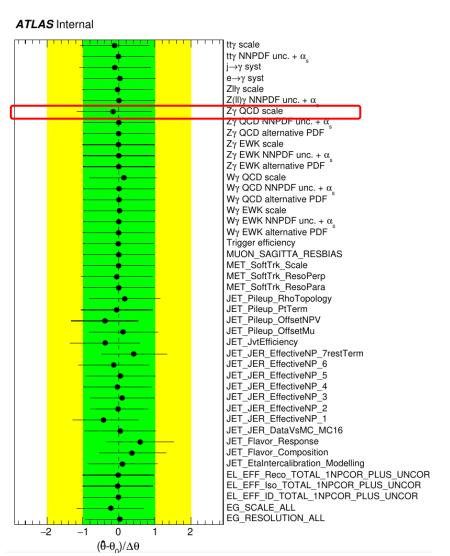
 $\mu(\gamma j) = 0.74 \pm 0.12$

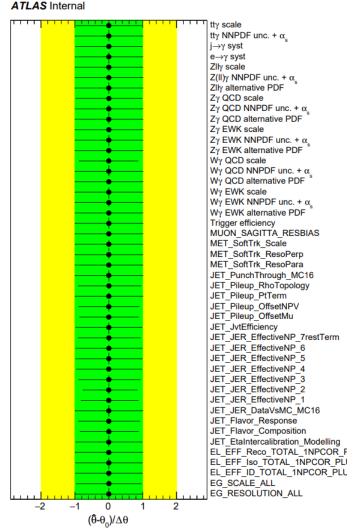
- Using the Asimov data: $\mu_{Z\gamma}$ = 1.00 ± 0.08 , $\mu_{W\gamma}$ = 0.93 ± 0.12 and $\mu_{\gamma i}$ = 0.74 ± 0.10. Expected signal significance 69 σ .
- Fit in the SR and CRs:

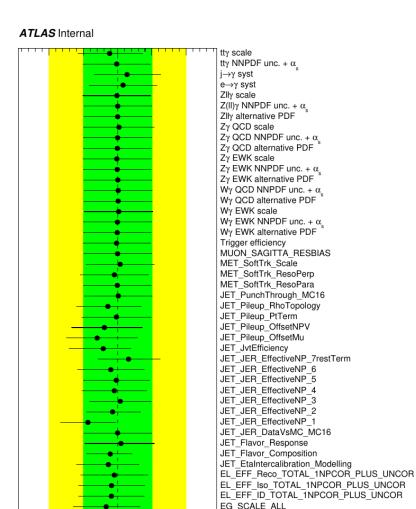
 \Rightarrow $\mu_{Z\gamma}$ = 0.70 ± 0.06, $\mu_{W\gamma}$ = 0.92 ± 0.06 and $\mu_{\gamma j}$ = 0.88 ± 0.08. Observed signal significance 50 σ .

Background only + max. symm.

Asimov

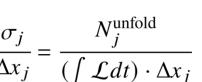

Observed

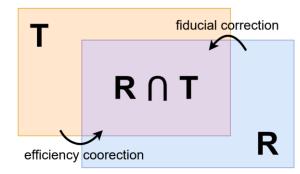

0

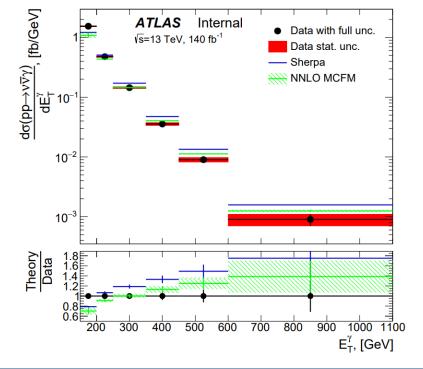

 $(\theta - \theta_0)/\Delta\theta$

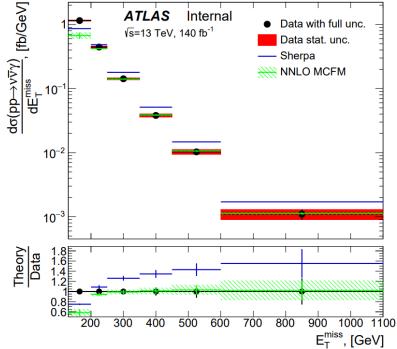
-2

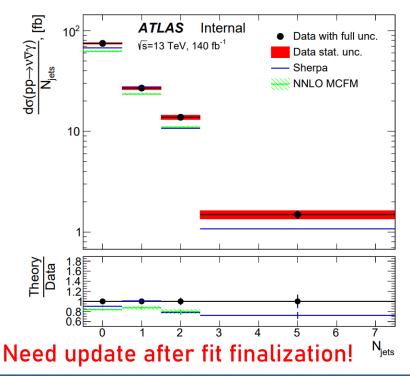
-1

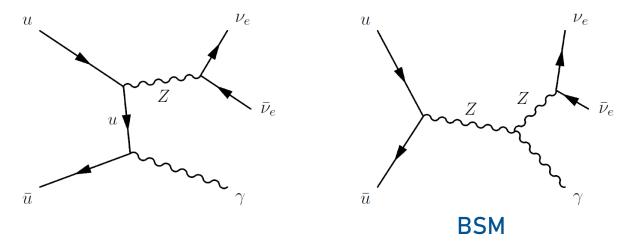





EG RESOLUTION ALL


Unfolding and differential measurement


- The goal of unfolding is to take the measured observable and translate it into the true observable.
- \Rightarrow The response matrix R relates true vector x and observed vector y: $\hat{R}\mathbf{x} = \mathbf{y}$
- Arr The response matrix is defined as: $R_{ij} = \frac{1}{\alpha_i} \varepsilon_j M_{ij}$ Migration matrix: $M_{ij} = \frac{N_{ij}^{\text{det. } \cap \, \text{fid.}}}{N_i^{\text{det. } \cap \, \text{fid.}}}$
- The unfolding procedure is performed according to the maximum likelihood method via TRExFitter.
- ⇒ The differential cross-section is defined by equation:

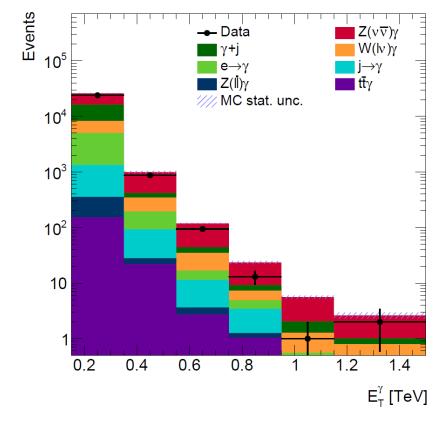


aTGC: introduction

- Z(vv)γ production is very sensitive to the neutral triple gauge couplings (aTGCs). aTGCs are zero in the SM at the tree level.
- Two ways to describe aTGCs: effective field theory and vertex function approach.
 Both formalisms were improved by theorists and new terms in both formalisms appear.

State-of-the-art UFO models are needed to generate the events. For both formalisms models with new terms were created.

EFT: model NTGC_all, <u>JIRA ticket</u>. VF: model NTGC_VF, <u>JIRA ticket</u>.


EFT: 6 Wilson coefficients (C_{G+}/Λ^4 , C_{G-}/Λ^4 , C_{BW}/Λ^4 , C_{BW}/Λ^4 , C_{BB}/Λ^4 , C_{WW}/Λ^4).

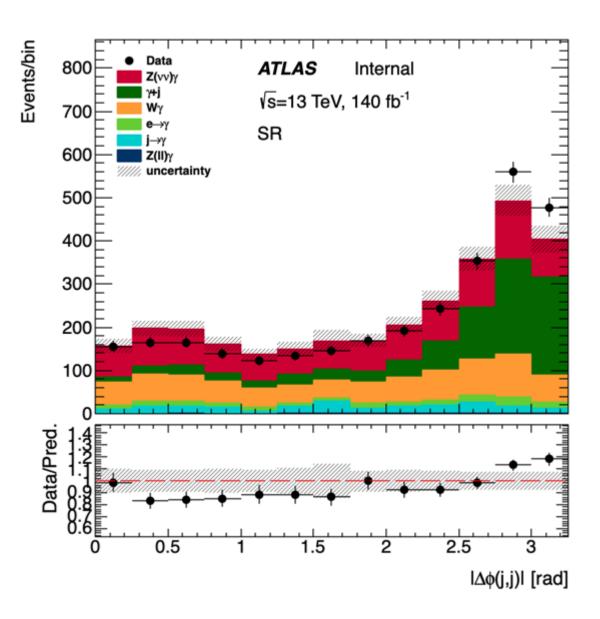
VF: 12 parameters (h_i^{V} ; i=1..6; V=Z, γ). Only i=3..5 are planned to be constrained.

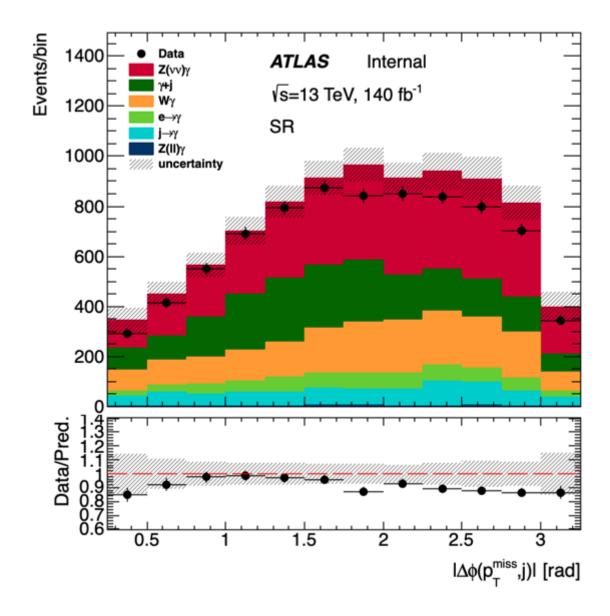
aTGC: current results

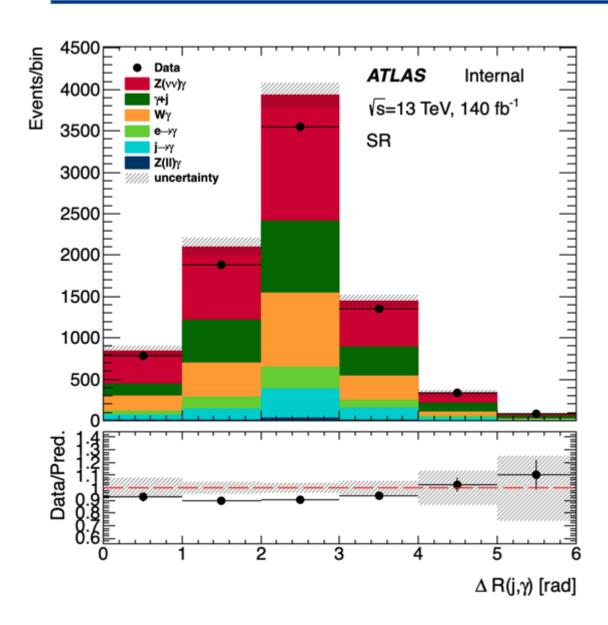
- Plan is to search for CP-conserving effects only. Search for CP-violating effects requires identification of the decay products.
- EFT samples were prepared, VF samples request in progress.
- Strategy: reco-level fit of the E_{T}^{γ} distribution. Preliminary results:

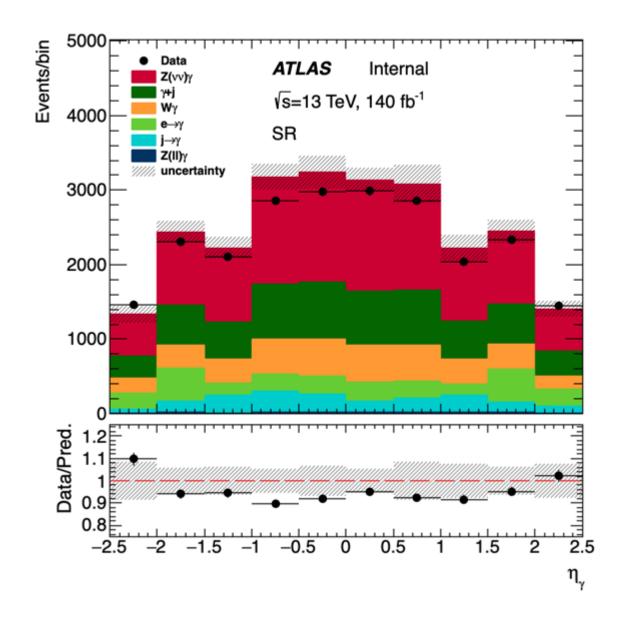
Coefficient	Expected limits $[\text{TeV}^{-4}]$
C_{G+}/Λ^4	[-0.0065; 0.0047]
C_{G-}/Λ^4	[-0.30; 0.34]
$C_{ ilde{B}W}/\Lambda^4$	[-0.35; 0.34]
C_{BW}/Λ^4	[-0.63; 0.63]
C_{BB}/Λ^4	[-0.25; 0.25]
C_{WW}/Λ^4	[-1.3; 1.3]

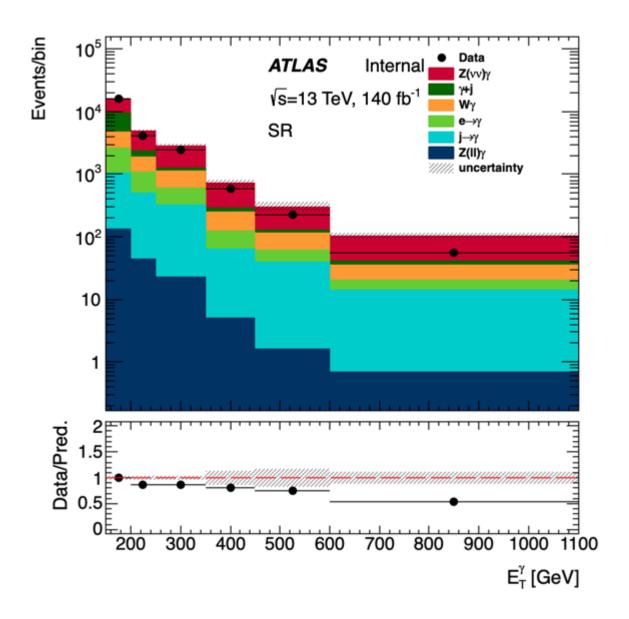
Summary

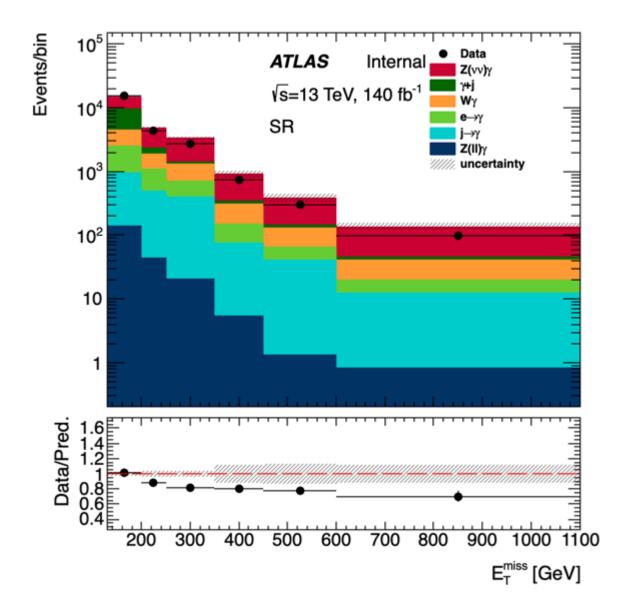

• All steps of inclusive $Z(v\overline{v})\gamma$ Run2 analysis are already done: selection optimisation, data-driven estimation of $e \to \gamma$ and jet $\to \gamma$, fit procedure, control plots, unfolding, differential cross-sections.

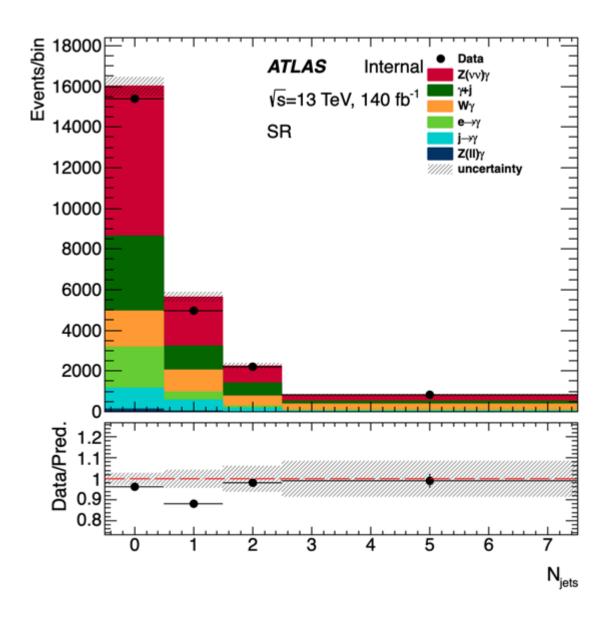

Plans:

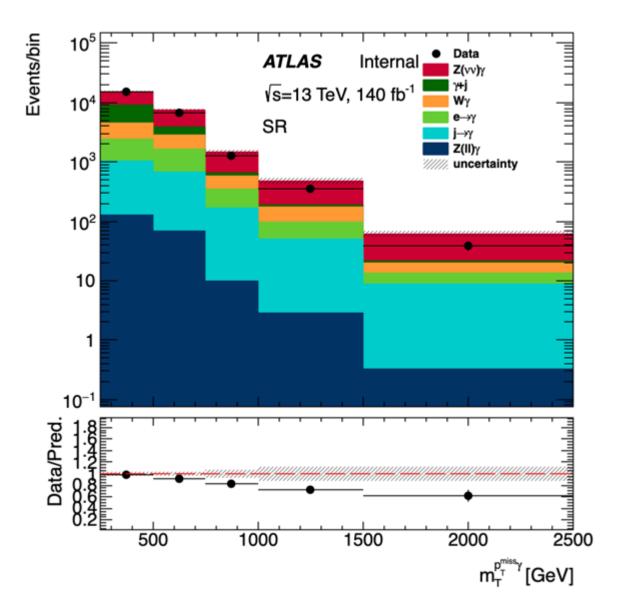

- □ To solve problems systematics.
- ⇒ To update and to obtain other observables differential cross-section plots.
- ⇒ To continue work on limits on aTGCs.
- ⇒ Almost all chapters of the internal note are ready, but need update.
- ⇒ EB request ASAP.

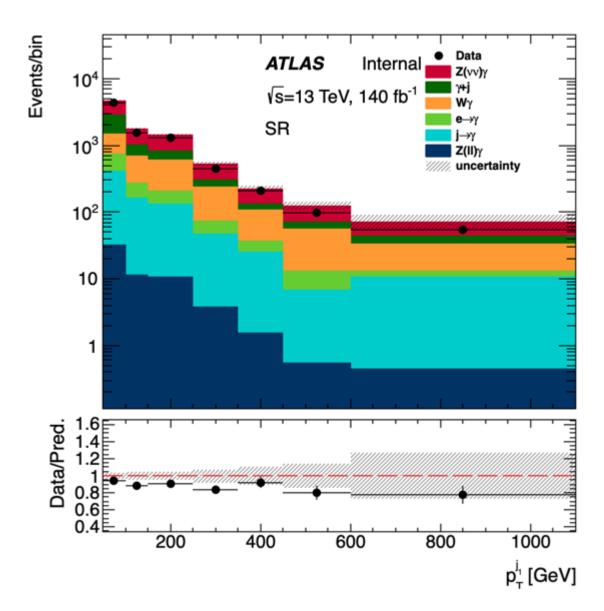

Thank you for your attention!

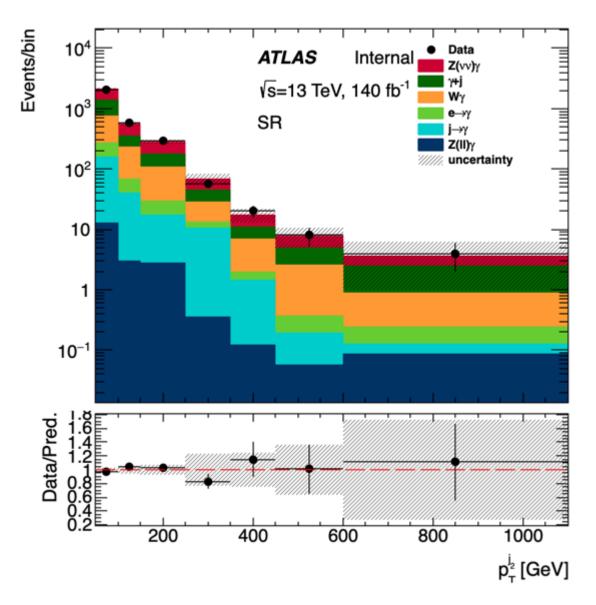

BACK-UP

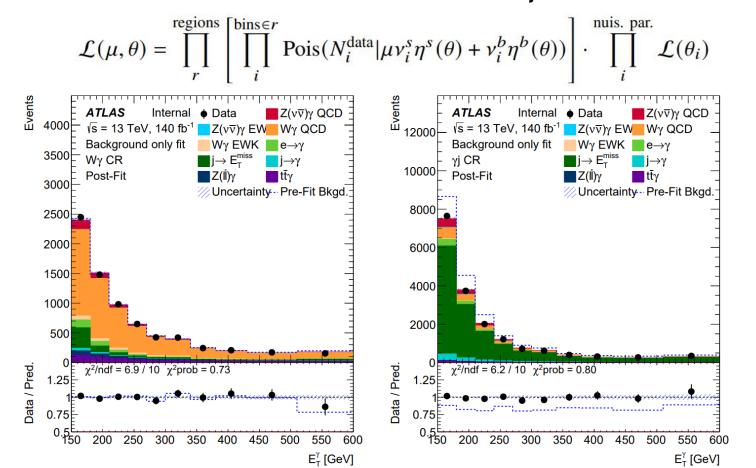


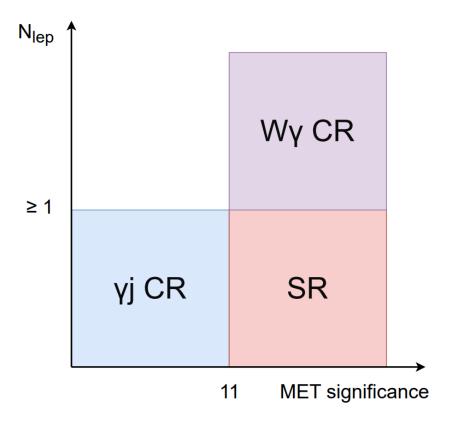












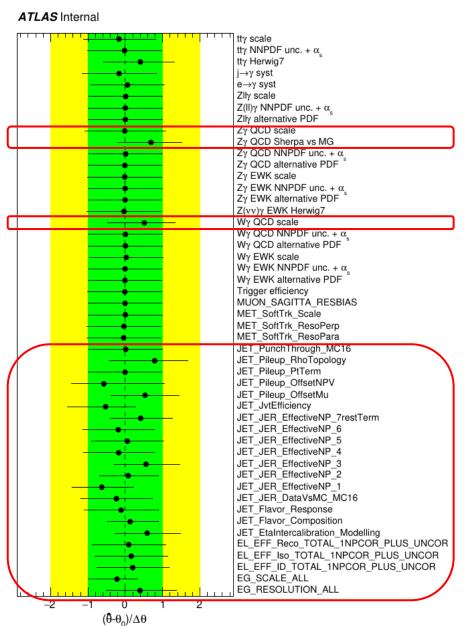
- Three free parameters are introduced in the combined fit: a signal strength parameter $\mu(Zg)$ and two normalization factors $\mu(Wg)$ and $\mu(\gamma j)$ used to scale the yields of $W(lv)\gamma$ and $t\gamma$ and $t\gamma$ and $t\gamma$ are processes.
- □ The binned likelihood function used in the analysis is:



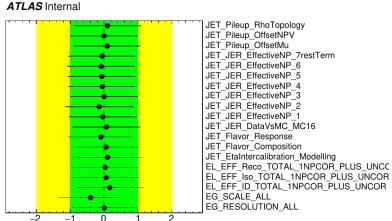
Results of background only fit:

$$\mu(Wg) = 1.00 \pm 0.06$$

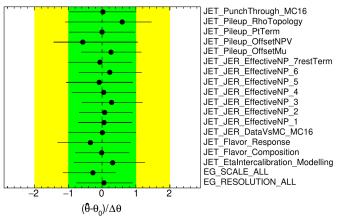
 $\mu(\gamma j) = 0.70 \pm 0.07$

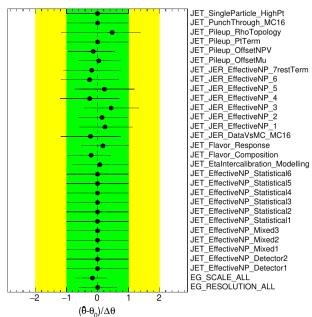

- Using the Asimov data: $\mu_{Z\gamma}$ = 1.00 ± 0.07 , $\mu_{W\gamma}$ = 1.00 ± 0.18 and $\mu_{\gamma j}$ = 0.70 ± 0.06. Expected signal significance 69 σ .
- Fit in the SR and CRs:

 \Rightarrow $\mu_{Z\gamma}$ = 0.90 ± 0.13, $\mu_{W\gamma}$ = 0.97 ± 0.06 and $\mu_{\gamma j}$ = 0.84 ± 0.05. Observed signal significance 64 σ .

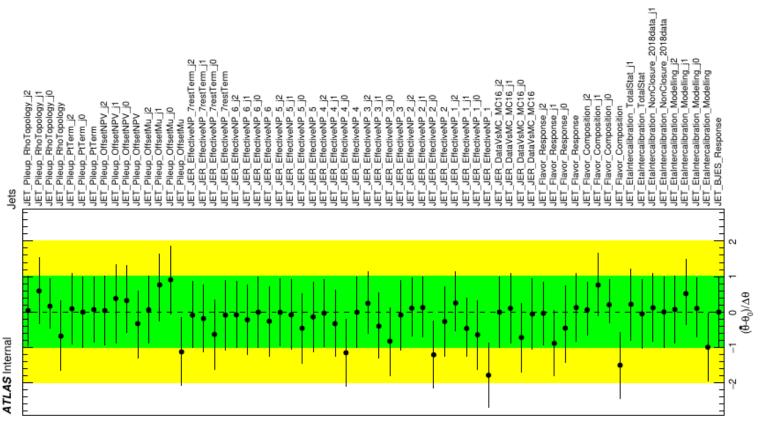

There are some problems with jet systematics!

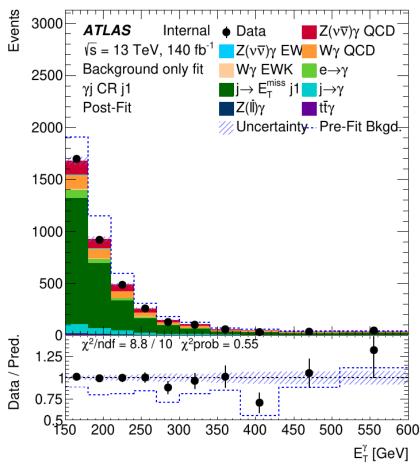
Problems with template fit


Fit in all CRs w/o gj sample (syst):


 $(\hat{\theta} - \theta_{\alpha})/\Delta$ **ATLAS** Internal

Fit in all CRs with cut on MET signif < 9 in gj CR:

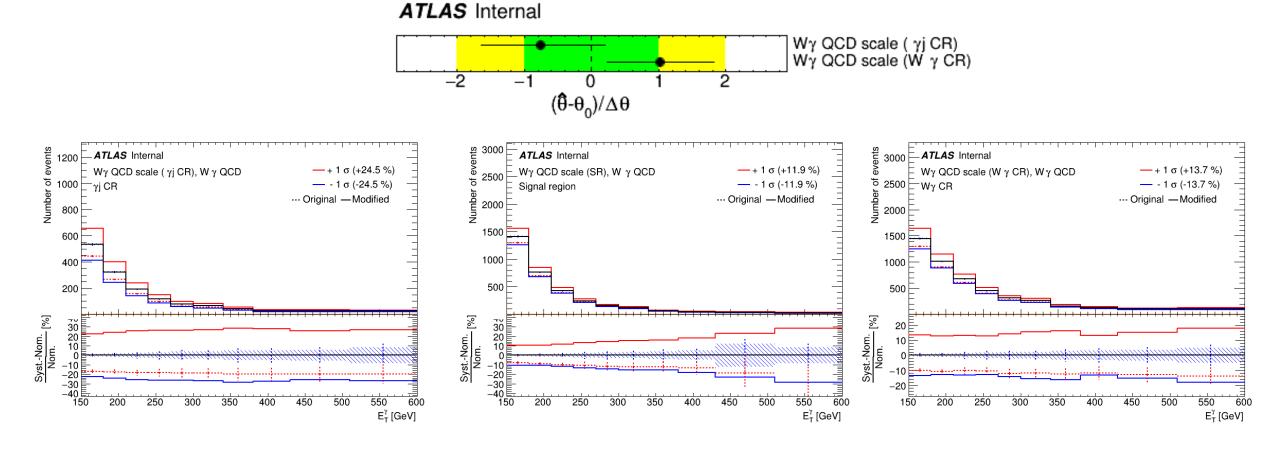




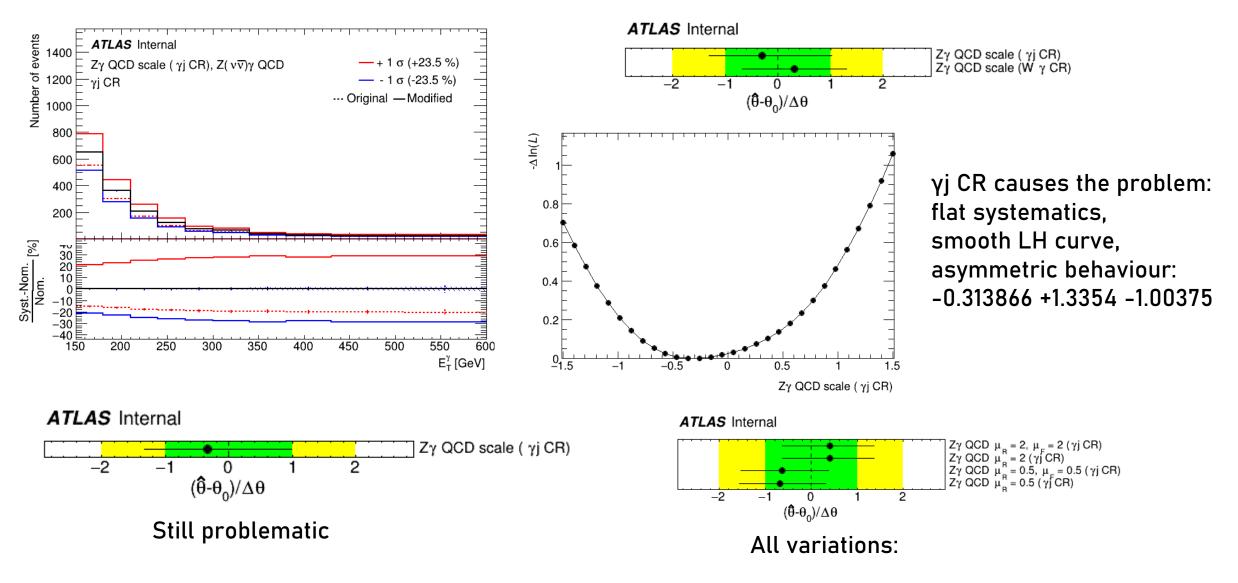
Fit in all CRs with gj sample with cut on pT soft term:

Problems with template fit: categorisation

There was an attempt to categorise the events based on N_{iets} in the gj CR (background only fit)

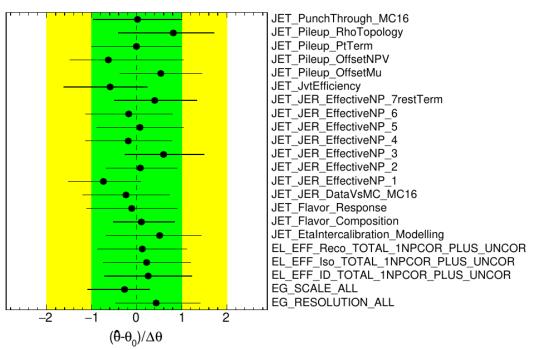


 \Rightarrow $\mu_{W\gamma}$ = 1.06 ± 0.04, $\mu_{\gamma j(0)}$ = 0.78 ± 0.09, $\mu_{\gamma j(1)}$ = 0.72 ± 0.09 and $\mu_{\gamma j(2)}$ = 0.73 ± 0.14.

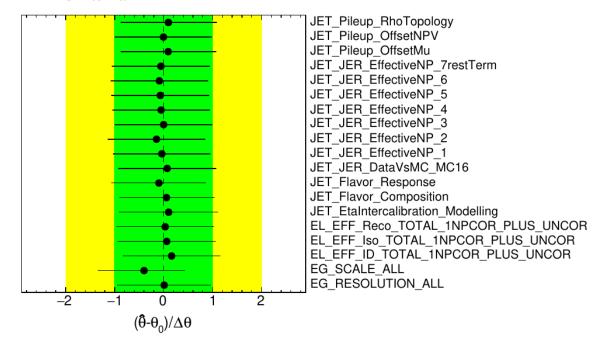

more information in back-up

Wy QCD scale: decorrelation

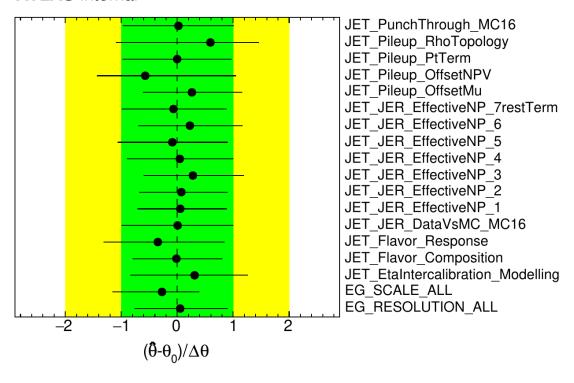
Wy CR causes the shift The central value is ~0.5 with all systematics adding \rightarrow no problem?


Zy QCD scale: decorrelation

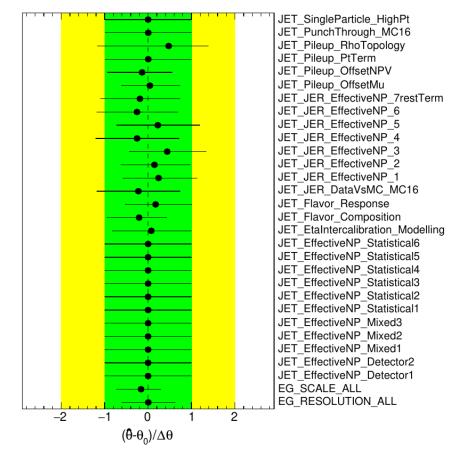
Not clear what's going wrong


Fit in all CRs with gj sample

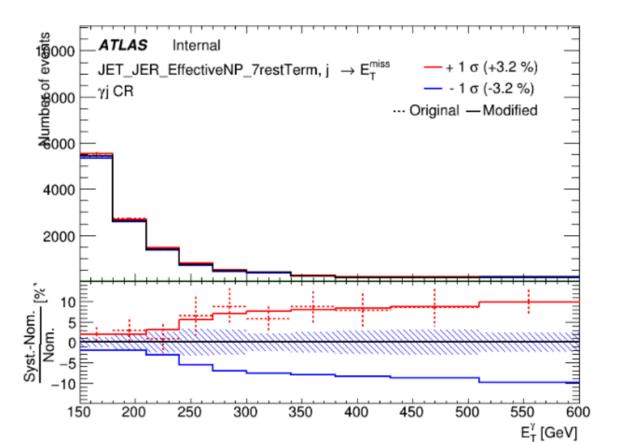
ATLAS Internal


Fit in all CRs w/o gj sample

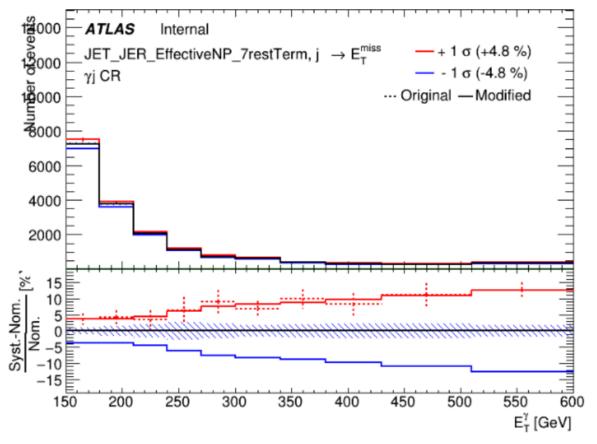
ATLAS Internal

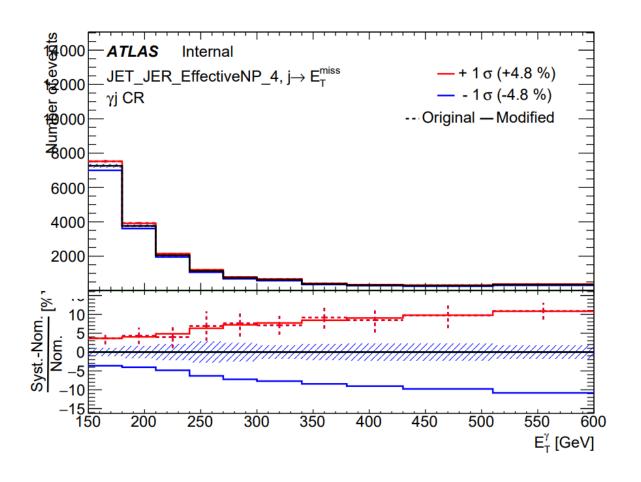

Fit in all CRs with gj sample with cut on MET signif < 9 in gj CR

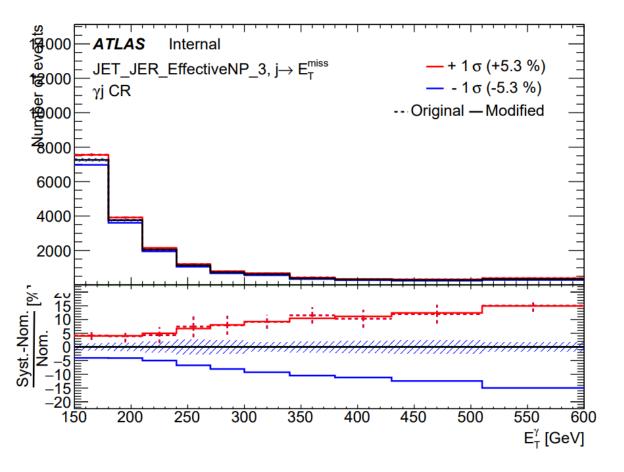
ATLAS Internal

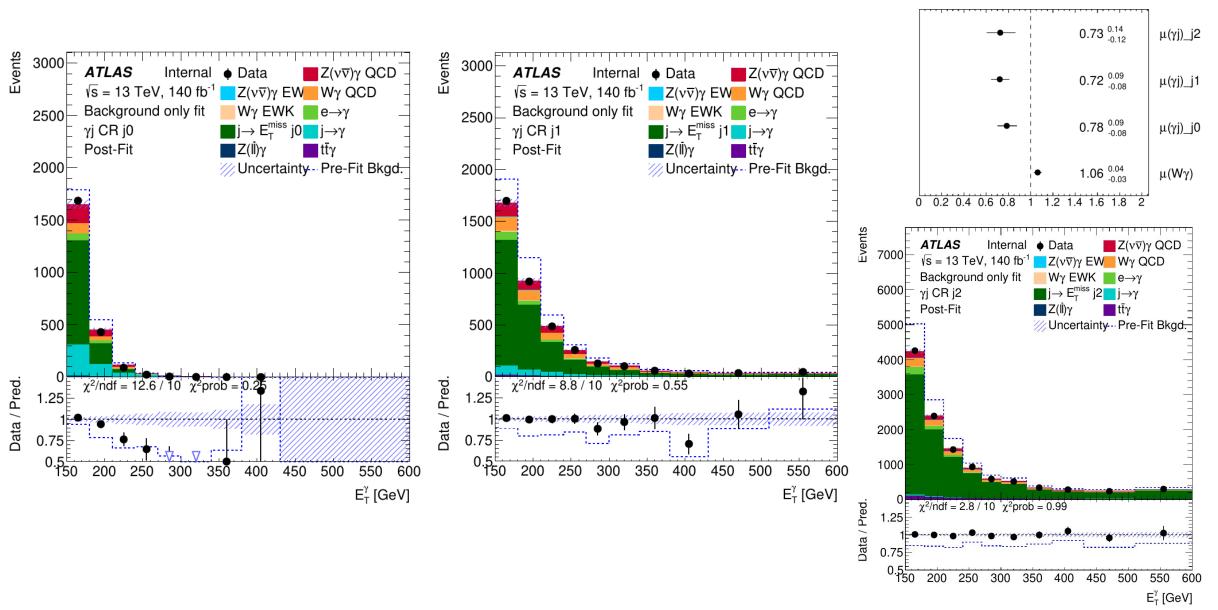


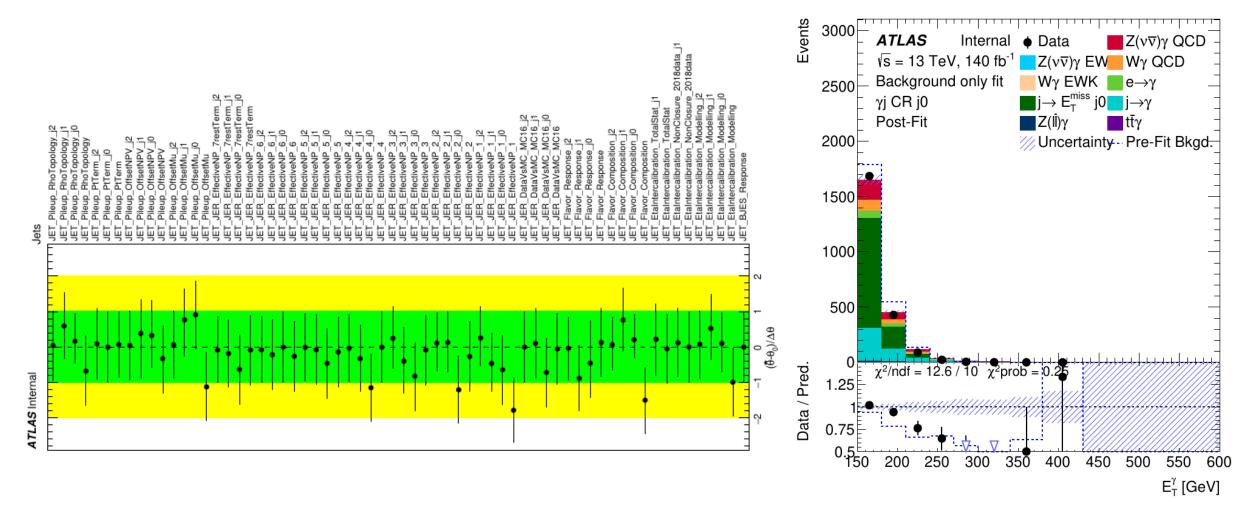
Fit in all CRs with gj sample with cut on pT soft term


ATLAS Internal




Reproc 21-02-23 with softterm

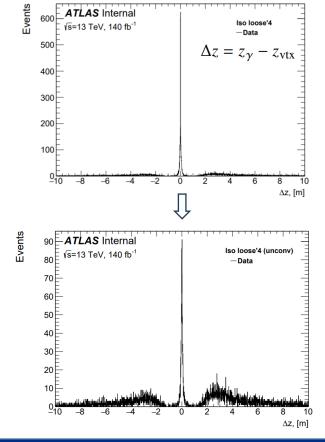

Reproc 03-11-23 w/o softterm

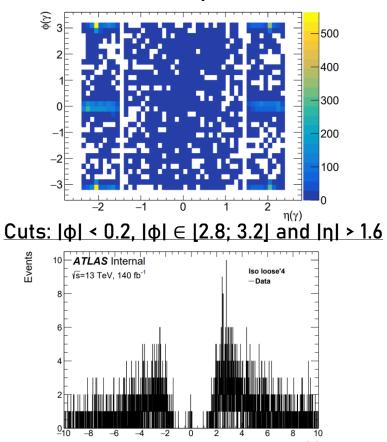


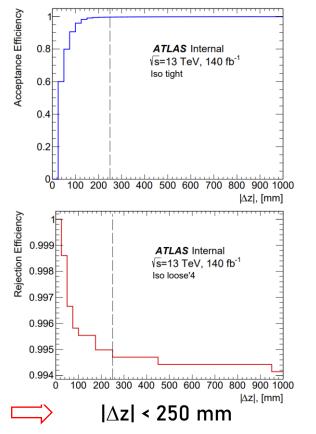
ATLAS Internal

Problems with template fit: categorisation

There was an attempt to categorise the events based on N_{iets} in the gj CR (background only fit)


 \Rightarrow μ_{W_Y} = 1.06 \pm 0.04, $\mu_{Y_j(0)}$ = 0.78 \pm 0.09, $\mu_{Y_j(1)}$ = 0.72 \pm 0.09 and $\mu_{Y_j(2)}$ = 0.73 \pm 0.14.


Beam-induced background (BIB)


Muons from pion and kaon decays in hadronic showers, induced by beam losses in non-elastic collisions
with gas and detector material, deposit large amount of energy in calorimeters through radiative
processes (= fake jets).

• The characteristic peaks of the fake jets due to BIB concentrate at $\pm \pi$ and 0 (mainly due to the bending in

the horizontal plane that occurs in the D1 and D2 dipoles and the LHC arc).

Rejection efficiency: (100 ± 2)% Acceptance efficiency: (99.6 ± 0.9)%

Selection optimisation

Variable	1	2	3	4
$E_T^{miss} signif.$		> 11		
$\Delta\phi(E_T^{miss},\gamma)$		> 0.6		_
$\Delta\phi(E_T^{miss}, j_1)$		> 0.3		_
E_T^{miss} , GeV		>130		_
		Signal		
$Z(\nu\nu)\gamma QCD$	9928 ± 8	10021 ± 8	10711 ± 8	13934 ± 9
$Z(\nu\nu)\gamma EWK$	151.6 ± 0.3	153.6 ± 0.3	166.3 ± 0.3	312.3 ± 0.4
Total signal	10080±8	10175 ± 8	10878 ± 8	14247 ± 9
		Background	•	
Wγ QCD	3022 ± 20	3061 ± 20	3310 ± 21	6795 ± 29
Wγ EWK	99.9 ± 0.6	101.3 ± 0.6	109.4 ± 0.6	309.8 ± 1.1
tt, top	156 ± 5	176 ± 5	201 ± 6	2800 ± 22
$W(e\nu)$	3091 ± 453	3409 ± 521	3591 ± 487	8540 ± 663
ttγ	161 ± 3	163 ± 3	178 ± 3	787 ± 6
γ+j	7642 ± 79	7757 ± 80	8123 ± 82	67517 ± 217
Zj	221 ± 16	328 ± 20	415 ± 21	2583 ± 50
$Z(ll)\gamma$	197 ± 4	200 ± 4	211 ± 4	426 ± 5
$W(\tau \nu)$	412 ± 65	575 ± 72	640 ± 69	4615 ± 138
Total bkg.	15002 ± 465	15770 ± 533	16779 ± 499	94373 ± 714
Stat. signif.	63.6 ± 0.6	63.2 ± 0.6	65.4 ± 0.6	43.23 ± 0.14

Table 33: The results of selection optimisation at three different working points *FixedCutTight*, *FixedCutTightCaloOnly*, *FixedCutLoose*.

Selection optimisation

	E_T^{miss} signif.				
	E_T^{miss} , GeV				
	$\Delta \phi(E_T^{miss}, \gamma)$				
	$\Delta \phi(E_T^{miss}, j_1)$				
		Sig	nal		
$Z(\nu\nu)\gamma QCD$	10711 ± 8	12307±9	10819±8	10728±8	10849±8
$Z(\nu\nu)\gamma EWK$	166.3 ± 0.3	251.5±0.4	167.6±0.3	168.3±0.3	171.0±0.3
Total signal	10878 ± 8	12559±9	10987±8	10897±8	11020±8
	Background				
Wγ QCD	3310 ± 21	4741±24	3385±21	3389±21	3440±22
Wγ EWK	109.4 ± 0.6	210.4±0.9	111.2±0.6	112.8±0.7	115.3±0.7
tt, top	177 ± 5	631±10	204±6	267±7	209±6
W(ev)	3591 ± 487	4372±517	3827±506	3883±487	3627±487
ttγ	178 ± 3	508±5	179±3	183±3	192±3
γ+j	8123 ± 82	24991±139	8552±84	8156±82	9668±86
Zj	415 ± 21	546±24	419±21	417±21	428±21
$Z(ll)\gamma$	211 ± 4	284±4	216±4	212±4	231±4
$W(\tau \nu)$	640 ± 69	945±100	651±69	821±70	655±69
Total bkg.	16779 ± 499	37229±546	17544±518	17440±499	18566±500
Stat. signif.	65.4 ± 0.6	56.3±0.3	65.0±0.6	64.7±0.6	64.1±0.5

Table 34: Comparison of statistical significance and event returns when each of the optimised variables is excluded. The excluded variable is highlighted in red.

Selections	Cut Value
$E_{ m T}^{ m miss} \ E_{ m T}^{e-probe}$	> 130 GeV
$E_{ m T}^{e-probe}$	> 150 GeV
Number of loose non-isolated photons	$N_{\gamma}=0$
Number of tight probe electrons	$N_{e-probe} = 1$
Lepton veto	$N_{\mu}+N_{\tau}=0$
$E_{\mathrm{T}}^{\mathrm{miss}}$ significance	> 11
$ \Delta\phi(e-probe,ec{p}_{\mathrm{T}}^{\mathrm{miss}}) $	> 0.6
$ \Delta\phi(j_1,ec{p}_{ m T}^{ m miss}) $	> 0.3

Table 5: Event selection criteria for e-probe CR events.

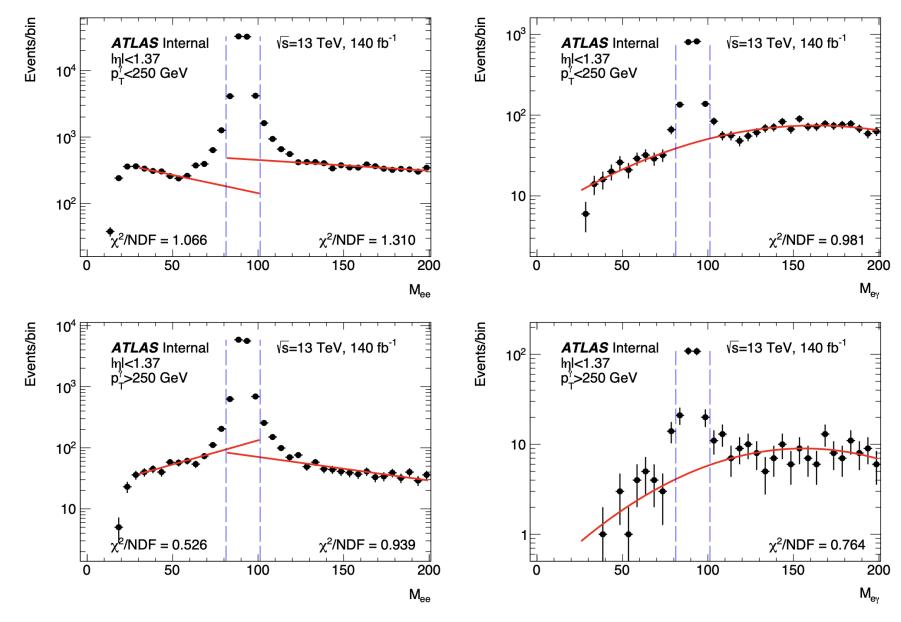
Event yield	real $e + E_{\rm T}^{\rm miss}$ (MC)	fake $e + E_{\rm T}^{\rm miss}$ (MC)	data
e-probe CR	78079 ± 4078	465 ± 34	74076

Table 6: Event yields for real $e + E_{\rm T}^{\rm miss}$ and fake $e + E_{\rm T}^{\rm miss}$ prediction and observed data in probe-electron control regions. Indicated uncertainties are statistical.

fake rate	$150 < E_T^{\gamma} < 250 \text{ GeV}$	$E_T^{\gamma} > 250 \text{ GeV}$	$1.52 < \eta < 2.37$	Total
	$0 < \eta < 1.37$	$0 < \eta < 1.37$	$1.32 < \eta < 2.37$	
syst. on fake-rate estimation.	4%	20%	10%	
syst. from stat. unc. on fake-rate	3%	7%	3%	
syst. from impurity of CR	0.16%	0.16%	0.16%	
Total rel. syst.	5%	21%	10%	
Event yield in (incl.) e-probe CR	49673	11492	20855	
Fake-rate	0.0234	0.0193	0.0714	
$e \rightarrow \gamma$ event yield in SR	1062	200	1345	2608
Total abs. syst.	58	42	134	162

Table 35: Systematics breakdown for $e \rightarrow \gamma$ background for SR.

Missing transverse momentum is calculated as the sum of the following terms:


$$E_{\mathrm{x(y)}}^{\mathrm{miss}} = E_{\mathrm{x(y)}}^{\mathrm{miss,e}} + E_{\mathrm{x(y)}}^{\mathrm{miss},\mu} + E_{\mathrm{x(y)}}^{\mathrm{miss},\tau_{\mathrm{had}}} + E_{\mathrm{x(y)}}^{\mathrm{miss,\gamma}} + E_{\mathrm{x(y)}}^{\mathrm{miss,jets}} + E_{\mathrm{x(y)}}^{\mathrm{miss,SoftTerm}},$$

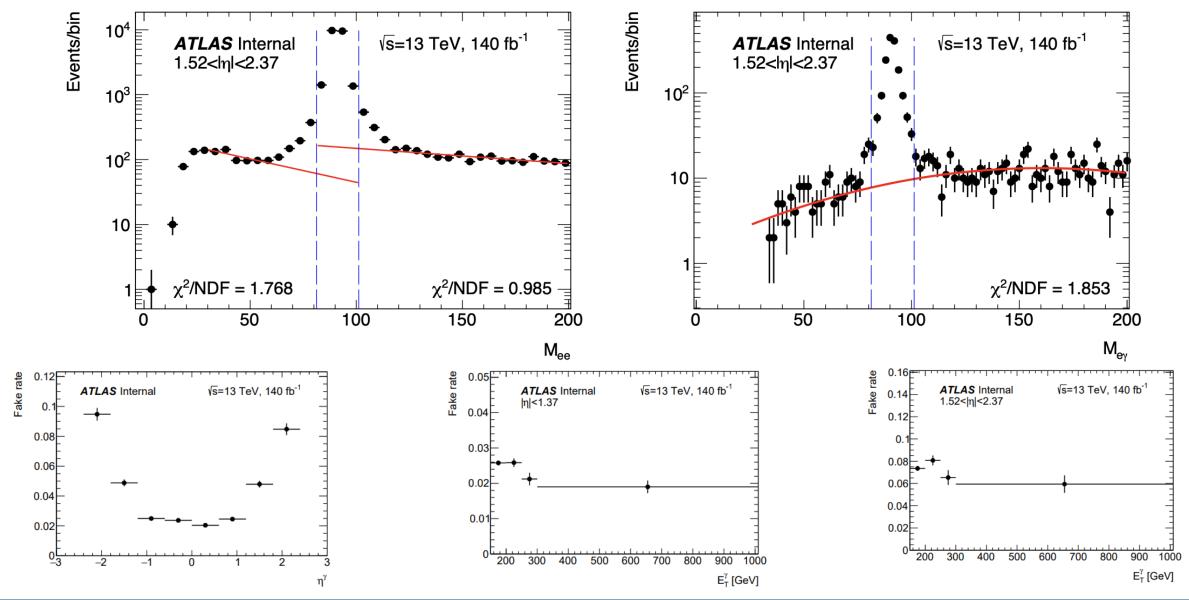

fake rate	$150 < E_T^{\gamma} < 250 \text{ GeV}$ 0 < n < 1.37	$E_T^{\gamma} > 250 \text{ GeV}$	1.52 < n < 2.37
	$0 < \eta < 1.37$	$0 < \eta < 1.37$	$1.32 < \eta < 2.37$
Z(ee) MC tag-n-probe	0.0218 ± 0.0004	0.0197 ± 0.0005	0.0762 ± 0.0012
Z(ee) MC mass window variation	0.0217 ± 0.0004	0.0198 ± 0.0005	0.0765 ± 0.0012
Z(ee) MC "real"	0.022 ± 0.002	0.023 ± 0.002	0.084 ± 0.004

Table 33: Electron-to-photon fake rates estimated in MC.

fake rate	$150 < E_T^{\gamma} < 250 \text{ GeV}$ $0 < \eta < 1.37$	$E_T^{\gamma} > 250 \text{ GeV}$	$1.52 < \eta < 2.37$
syst. from mass window var.:	$\frac{0 < \eta < 1.57}{0.3\%}$	$\frac{0 < \eta < 1.57}{0.7\%}$	0.4%
syst. from tag-n-probe and real f.r.:		15%	10%
Background fit variation	4 %	14%	3%
Total syst.:	4%	20%	10%

Table 34: Electron-to-photon fake rate systematics components.

jet ightarrow γ misID background: ABCD method

- Tight and isolated region (region A equivalent to $Z\gamma$ signal region described in Sec. 4.7): events have a leading photon candidate that is isolated ($E_{\rm T}^{\rm cone20} - 0.065 p_{\rm T}^{\gamma} < 0$ GeV) and passes the *tight* selection.
- Tight but not isolated region (control region B): events have a leading photon candidate that is not isolated $(E_{\rm T}^{\rm cone20} - 0.065 p_{\rm T}^{\gamma} > {\rm iso~gap})$ and passes the *tight* selection.
- Non-tight and isolated region (control region C): events have a leading photon candidate that is isolated $(E_{\rm T}^{\rm cone20} - 0.065 p_{\rm T}^{\gamma} < 0 \text{ GeV})$ and passes the *non-tight* selection.
- Non-tight and not isolated region (control region D): events have a leading photon candidate that is not isolated ($E_{\rm T}^{\rm cone20} - 0.065 p_{\rm T}^{\gamma}$ > iso gap) and passes the *non-tight* selection.

• loose'2:
$$w_{s3}$$
, F_{side}

• loose'3:
$$w_{s3}$$
, F_{side} , ΔE

• loose'4:
$$w_{s3}$$
, F_{side} , ΔE , E_{ratio}

• loose'5:
$$w_{s3}$$
, F_{side} , ΔE , E_{ratio} , w_{tot} ,

$$N_{\rm A}^{Z(\nu\bar{\nu})\gamma} = \tilde{N}_{\rm A} - R(\tilde{N}_{\rm B} - c_{\rm B}N_{\rm A}^{Z(\nu\bar{\nu})\gamma}) \frac{\tilde{N}_{\rm C} - c_{\rm C}N_{\rm A}^{Z(\nu\nu)\gamma}}{\tilde{N}_{\rm D} - c_{\rm D}N_{\rm A}^{Z(\nu\bar{\nu})\gamma}}.$$

$$a = c_{\rm D} - Rc_{\rm B}c_{\rm C};$$

$$b = \tilde{N}_{\rm D} + c_{\rm D}\tilde{N}_{\rm A} - R(c_{\rm B}\tilde{N}_{\rm C} + c_{\rm C}\tilde{N}_{\rm B});$$

$$\tilde{N}_{\rm C} - c_{\rm C}N_{\rm A}^{Z(\nu\nu)\gamma}$$

	Data	$W\gamma$	$e ightarrow \gamma$	$tt\gamma$	γ+jet	$Z(ll)\gamma$
A	23375 ± 153	3420 ± 21	2608 ± 11	178 ± 3	8123 ± 82	211 ± 4
В	270 ± 16	17.7 ± 1.3	4.269 ± 0.016	0.46 ± 0.14	7 ± 3	0.6 ± 0.2
C	4393 ± 66	108 ± 3	92.8 ± 0.3	6.1 ± 0.5	259 ± 13	7.1 ± 0.6
D	497 ± 22	0.6 ± 0.2	0 ± 0	0.07 ± 0.05	0.06 ± 0.06	0 ± 0

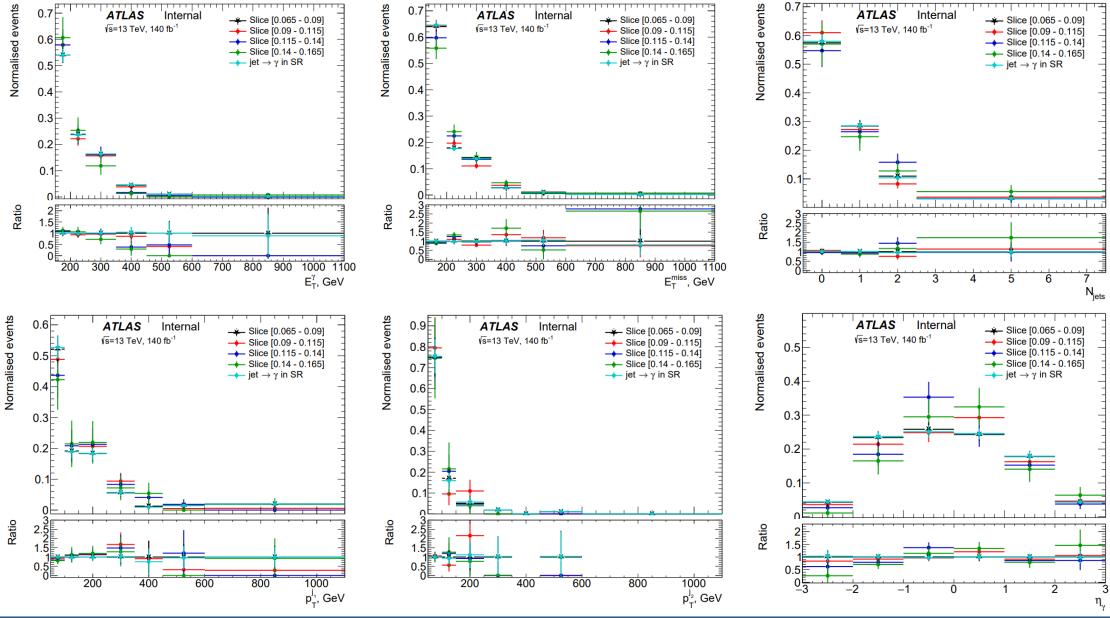
jet $\rightarrow \gamma$ misID background: slice method

To take into account the dependence of the estimate on the photon isolation, the non-isolated regions are split into a set of into successive intervals (slices) based on the photon isolation. In this way, the number of $jet \rightarrow \gamma$ background events in each non-isolated slice i of the CR1 $N_{\text{CR1(i)}}^{jet \rightarrow \gamma}$ is derived as follows:

$$N_{\text{CR1(i)}}^{jet \to \gamma} = N_{\text{CR1(i)}}^{\text{data}} - N_{\text{CR1(i)}}^{\text{Z}(\nu\bar{\nu})\gamma} - N_{\text{CR1(i)}}^{\text{bkg}},$$

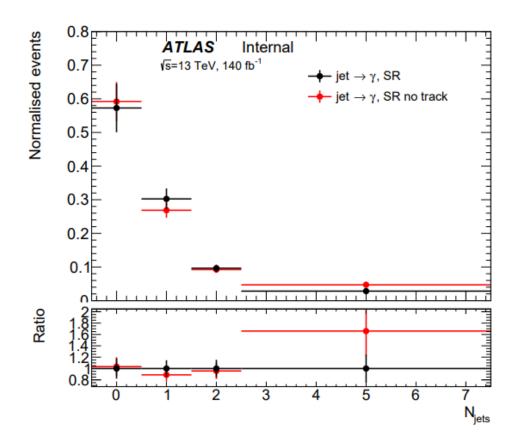
Four isolation slices are chosen: [0.065, 0.090, 0.115, 0.140, 0.165].

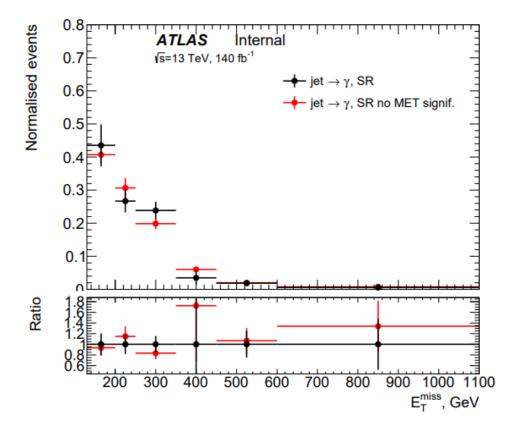
$$H_{jet \to \gamma}^{[0.A,0.B]} = H_{\mathrm{data}}^{[0.A,0.B]}[X] - H_{\mathrm{sig}}^{[0.A,0.B]}[X] - H_{\mathrm{bkg}}^{[0.A,0.B]}[X],$$


$$\Delta^{CR2}[X] = \frac{1}{2} \left(\frac{H_{jet \to \gamma}^{[0.065,0.09]}[X] - H_{jet \to \gamma}^{[0.115,0.14]}[X]}{2} + \frac{H_{jet \to \gamma}^{[0.09,0.115]}[X] - H_{jet \to \gamma}^{[0.14,0.165]}[X]}{2} \right),$$

$$H_{jet \to \gamma}^{SR} = H_{jet \to \gamma}^{[0.065, 0.09]}[X] + \Delta^{CR2}[X].$$

Photon isolation CR1 CR2 E_Tmiss < 130 GeV or ETmiss > 130 GeV E_Tmiss sig. < 8 or ETmiss sig. > 11 $|\Delta \varphi(p_T^{miss}, \gamma)| < 0.6 \text{ or}$ $|\Delta \varphi(p_T^{miss}, \gamma)| > 0.6$ $|\Delta \varphi(p_T^{miss}, j_1)| > 0.3$ $|\Delta \varphi(p_T^{miss}, j_1)| < 0.3$ **Tight Tight** Non-isolated Non-isolated ETmiss > 130 GeV E_T^{miss} < 130 GeV or E_T^{miss} sig. < 8 or ETmiss sig. > 11 $|\Delta \varphi(p_T^{miss}, \gamma)| < 0.6 \text{ or}$ $|\Delta \varphi(p_T^{miss}, \gamma)| > 0.6$ $|\Delta \varphi(p_T^{miss}, j_1)| < 0.3$ $|\Delta \varphi(p_T^{miss}, j_1)| > 0.3$ **Tight** Tight Isolated **Isolated**


Kinematic selections


jet $ightarrow \gamma$ misID background: slice method

jet $\rightarrow \gamma$ misID background: slice method

The detailed procedure of $jet \to \gamma$ background shape estimation is presented in Section 5.2.2. To increase the statistics in the anti-isolated slices, the cut on track isolation is relaxed. Figure 51 shows that the shape of the $jet \to \gamma$ distribution in the SR does not change when relaxing track isolated in the CR2. Figure 52 shows that the shape of the $jet \to \gamma$ distribution for $E_{\rm T}^{\rm miss}$ in the SR does not change when relaxing cut on $E_{\rm T}^{\rm miss}$ significance in the CR2.

$$R_{ij} = \frac{1}{\alpha_i} \varepsilon_j M_{ij}, \qquad M_{ij} = \frac{N_{ij}^{\text{det.} \cap \text{fid.}}}{N_j^{\text{det.} \cap \text{fid.}}}.$$

Correction factor	Value
$\overline{A_{Z\gamma}}$	0.9049 ± 0.0008
$C_{Z\gamma}$	0.7487 ± 0.0007

$$R_{ij} = \frac{1}{\alpha_i} \varepsilon_j M_{ij}, \qquad M_{ij} = \frac{N_{ij}^{\text{det. } \cap \text{ fid.}}}{N_j^{\text{det. } \cap \text{ fid.}}}. \qquad \alpha_i = \frac{N_i^{\text{det. } \cap \text{ fid.}}}{N_i^{\text{det.}}}. \qquad \varepsilon_j = \frac{N_j^{\text{det. } \cap \text{ fid.}}}{N_j^{\text{fid.}}}. \qquad \frac{\sigma_j}{\Delta x_j} = \frac{N_j^{\text{unfold}}}{(\int \mathcal{L} dt) \cdot \Delta x_j},$$

The unfolding procedure by folding can be performed with following steps:

• Myltiplying the response matrix \hat{R} and the particle-level distribution:

$$F_{ij} = R_{ij} \cdot T_j = \begin{pmatrix} \vec{r}_1 \\ \vec{r}_1 \\ \vdots \\ \vec{r}_n \end{pmatrix} \cdot \begin{pmatrix} t_1 \\ t_1 \\ \vdots \\ t_n \end{pmatrix} = \begin{pmatrix} \vec{f}_1 \\ \vec{f}_1 \\ \vdots \\ \vec{f}_n \end{pmatrix},$$

• Myltiplying each of the *n* histograms by the NFs $\mu_i = (\mu_1, \mu_2, ..., \mu_n)$:

$$G_{ij} = F_{ij} \cdot \mu_j = \begin{pmatrix} \vec{f}_1 \\ \vec{f}_1 \\ \vdots \\ \vec{f}_n \end{pmatrix} \cdot \begin{pmatrix} \mu_1 \\ \mu_1 \\ \vdots \\ \mu_n \end{pmatrix} = \begin{pmatrix} \vec{g}_1 \\ \vec{g}_1 \\ \vdots \\ \vec{g}_n \end{pmatrix}.$$

The next step is to add all vecors \vec{g}_i . As a result we get one histogram with m bins.

- Fit the folded distribution by tuning NFs μ_j . As a result one gets the fitted parameters μ'_i = $(\mu'_1, \mu'_2, \dots, \mu'_n).$
- Dot multiply normalised NFs and truth histogram.

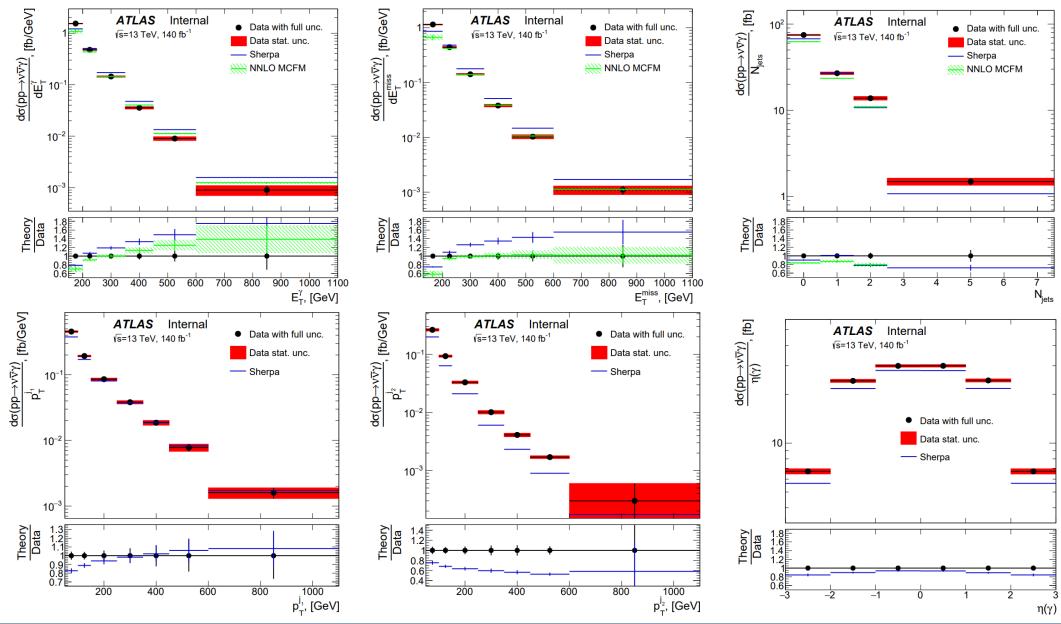
Fiducial region:

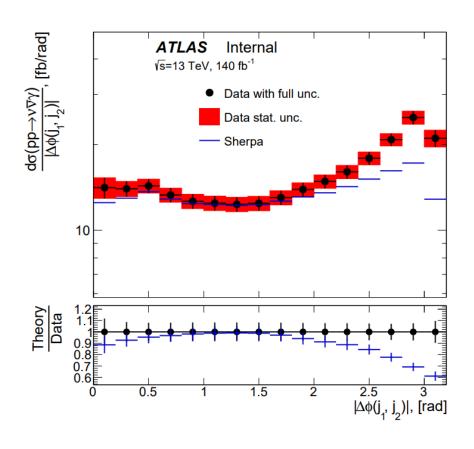
	G
Category	Cut
Photons	Isolated, $E_{\rm T}^{\gamma} > 150 {\rm GeV}$
	$ \eta < 2.37$ excluding $1.37 < \eta < 1.52$
Jets	$ \eta < 4.5$
	$p_{\rm T} > 50~{\rm GeV}$
	$\Delta R(jet, \gamma) > 0.3$
Lepton	$N_l = 0$
Neutrino	$p_{\mathrm{T}}^{\nu\bar{\nu}} > 130 \mathrm{GeV}$
Events	$ \Delta\phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \gamma) > 0.7$
	$ \Delta\phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}},j_{1}) >0.4$
	$p_{\rm T}^{\nu\bar{\nu}}$ significance > 11

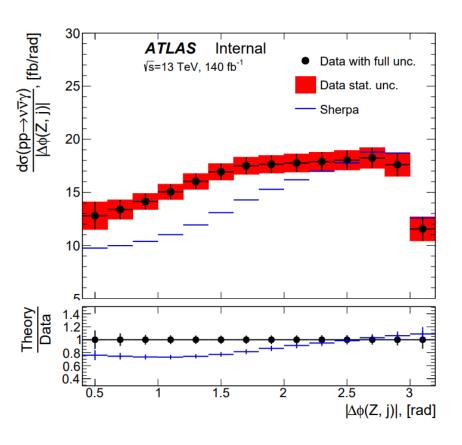
$$\mathcal{L}(\sigma, \theta, \lambda) = \prod_{i} P\left(N_{i} | \mathcal{L}_{int} \sum_{j} \mathcal{R}_{ij}(\vec{\theta}) \sigma_{j}(\vec{\theta}) + \mathcal{B}_{i}(\vec{\theta}, \lambda)\right) \times \prod_{k} G(\theta_{k})$$

$$N_{j} = \mathcal{L}_{int} \sigma_{j} \text{ with } \sigma_{j} = \mu_{j} \sigma_{j}^{MC}$$

$$\mathcal{L}(\sigma, \theta, \lambda) = \mathcal{L}(\sigma, \theta, \lambda)_{noreg.} \times \left(-\frac{\tau^{2}}{2} \sum_{i=2}^{i+2 < N_{bins}} ((\mu_{i} - \mu_{i-1}) - (\mu_{i+1} - \mu_{i}))^{2}\right)$$


$$\frac{\sigma_{j}}{\Delta x_{j}} = \frac{N_{j}^{unfold}}{(\int \mathcal{L} dt) \cdot \Delta x_{j}}$$


Observable	Binning
$\overline{p_{\mathrm{T}}^{\gamma}}$	[150, 200], [200, 250], [250, 350], [350, 450], [450, 600], [600, 1100]
$E_{ m T}^{ m miss}$	[130, 200], [200, 250], [250, 350], [350, 450], [450, 600], [600, 1100]
$N_{ m jets}$	[-0.5, 0.5], [0.5, 1.5], [1.5, 2.5], [2.5, 7.5]
$\overline{\eta_{\gamma}}$	[-3, -2, -1, 0, 1, 2, 3]
$rac{\eta_{\gamma}}{p_T^{j_1}} \ rac{p_T^{j_2}}{p_T^{j_2}}$	[50, 100, 150, 250, 350, 450, 600, 1100]
$\overline{p_T^{j_2}}$	[50, 100, 150, 250, 350, 450, 600, 1100]
$\overline{ \Delta\phi(j,j) }$	[0.0 - 3.2], 16 bins
$ \Delta\phi(p_{\mathrm{T}}^{\mathrm{miss}},j) $	[0.4 - 3.2], 14 bins


Table 29: Summary of the differential measurements in the analysis

Extended fiducial region:

Category	Cut
Photons	Isolated, $E_{\rm T}^{\gamma} > 150 {\rm GeV}$
	$ \eta < 2.37$
Jets	$ \eta < 4.5$
	$p_{\rm T} > 50~{\rm GeV}$
	$\Delta R(jet, \gamma) > 0.3$
Neutrino	$p_{\rm T}^{\nu\bar{\nu}} > 130 \text{GeV}$

OMC method

Overlay Monte-Carlo (OMC) Method

Strategy:

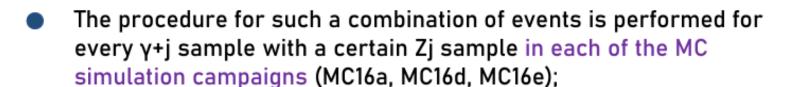
- 1. To estimate the number of pile-up events (referred to as A+B) in the diboson production (referred to as AB) the overlay Monte-Carlo (OMC) method uses separate A and B samples at the particle-level.
- 2. The overlay of B over A is performed by adding objects (photons, jets, etc.) from B into A;
- The variables that define the AB final state are calculated in order to form a valid combined A+B event (referred to as OMC event). These variables are used to be checked against analysis selections;
- 4. The weight of the combined A+B event is determined as:

$$w_{\rm A+B} = \frac{w_{\rm A}w_{\rm B}}{\langle w_{\rm A}\rangle\langle w_{\rm B}\rangle} \frac{L\sigma_{\rm A+B}}{N_{\rm OMC}}$$

$$\sigma_{
m A+B} = \langle \mu
angle rac{\sigma_{
m A} \sigma_{
m B}}{\sigma_{
m inel}}$$

5. The number of A+B events at the particle-level is defined as the sum of OMC sample weights:

$$N_{
m A+B}^{
m gen} = \sum w_{
m A+B}$$


6. The predicted number of pile-up events at the detector-level in the SR is estimated as follows:

$$N_{A+B}^{\text{rec}} = N_{A+B}^{\text{gen}} C$$

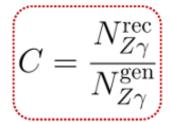
^{*}Correction factor (C) is defined as the reconstructed MC signal AB events passing all selections divided by the number of MC signal AB events at the particle-level within the fiducial region.

OMC method

- The Z boson (taken as A) and the photon (taken as B) components of Z+γ OMC events are taken from Zj and γ+j MC samples, respectively;
- The particle-level photon from γ+j process is being overlayed over random particle-level Z boson from Zj process until it becomes a part of Z+γ OMC event, that passes the fiducial region requirements;

- Iterating through all γ+j events requires significant computing resources, therefore only 100k events of every statistically large γ+j sample are used to form OMC sample;
- The total number of pile-up events at the particle-level is obtained by combining each γ+j sample sequentially with each Zj sample.

Definition of the fiducial region:


Category	Cut
Photons	Isolated, $E_{\mathrm{T}}^{\gamma} > 150 \; \mathrm{GeV}$
	$ \eta < 2.37$ excl. $1.37 < \eta < 1.52$
Jets	$ \eta < 4.5$
	$p_T > 50 \mathrm{GeV}$
	$\Delta R(jet,\gamma) > 0.3$
Lepton	$N_l=0$
Neutrino	$p_{\mathrm{T}}^{ uar{ u}} > 130~\mathrm{GeV}$
Events	Significance $E_{\mathrm{T}}^{\mathrm{miss}} > 11$
	$ \Delta\phi(ec{p}_{ m T}^{ m miss},\gamma) >0.6$
	$ \Delta\phi(ec{p}_{ m T}^{ m miss},j_1) >0.3$

The weight and the cross section of the combined Z+y event:

$$w_{Z+\gamma} = \frac{w_Z w_{\gamma}}{\langle w_Z \rangle \langle w_{\gamma} \rangle} \frac{L \sigma_{Z+\gamma}}{N_{\text{OMC}}}$$
$$\sigma_{Z+\gamma} = \langle \mu \rangle \frac{\sigma_Z \cdot SF_Z \cdot \sigma_{\gamma} \cdot SF_{\gamma}}{\sigma_{\text{inel}}}$$

OMC method

 The C-factor is parameterized by the transverse momentum of the photon, since the total number of pile-up events at the particle-level is summed from the number of pile-up events calculated for each γ+j sample.

The estimates of correction factor obtained with Z(vv)γ MC signal for 4 intervals of the transverse momentum of the photon [150; 280; 500; 1000; 2000] GeV:

p_{T}^{γ} , ГэВ	MC16a	MC16d	MC16e
150-280	$0.8685 {\pm} 0.0018$	$0.8155 {\pm} 0.0017$	$0.8246{\pm}0.0014$
280-500	$0.853{\pm}0.005$	$0.818 {\pm} 0.004$	$0.822{\pm}0.004$
500-1000	$0.841{\pm}0.015$	0.803 ± 0.014	$0.829 {\pm} 0.012$
1000-2000	$0.80 {\pm} 0.08$	$0.84{\pm}0.11$	0.73 ± 0.06

$$N_{Z+\gamma}^{SR} = N_{Z+\gamma}^{FR} C$$

The final estimate* of background events due to multiple pp collisions: $N_{Z+\gamma}^{SR}$ = 2.938 ± 0.018(stat.) events; *(more in back-up)

The statistical uncertainties come from:

- The uncertainty of the weights w_{γ} and $w_{\overline{Z}}$ of events used in the combination of γ +j samples with Zj samples;
- The uncertainty of C-factor;
- The uncertainty of SF-factors;

The fraction of pile-up events in relation to the data obtained using the OMC method is $(0.01257 \pm 0.00011)\%$.