Inclusive Z(vv̄)γ full Run2 analysis report

Katerina Kazakova^{1, 2}

on behalf of the ZnunuGamma group

¹National Research Nuclear University MEPhI, Moscow ² Joint Institute for Nuclear Research, Dubna

MEPhI@Atlas meeting 12/04/2024

Questions

1) What is the signal significance for MC16a, d and e?

2) Should the third source of systematic (difference between "real fake rate" in Z(ee) MC and tag-and-probe method) be considered for the data-driven background estimation of $e \rightarrow \gamma$?

<u>Answer:</u> This systematic can be disregarded because it is a deviation in MC, meaning this systematic is not mandatory. However, taking it into account makes the estimation more conservative.

Process	MC16a	MC16d	MC16e	Run2	Run2 (before opt.)
Signal					
$Z(\nu\nu)\gamma QCD$	2915 ± 4	3345 ± 5	4452 ± 5	10711 ± 8	13438 ± 9
$Z(\nu\nu)\gamma EWK$	$45.57 {\pm} 16$	$51.80 {\pm} 0.19$	$68.9{\pm}0.2$	166.3 ± 0.3	$300.5 {\pm} 0.4$
Total signal	2961 ± 4	$3396{\pm}5$	4521 ± 5	10878 ± 8	13738 ± 9
		Ba	ckground		
$W\gamma \text{ QCD}$	$884{\pm}11$	1026 ± 13	1400 ± 13	3310 ± 21	$6393{\pm}28$
$ m W\gamma~EWK$	$29.5{\pm}0.3$	$34.1 {\pm} 0.4$	$45.8 {\pm} 0.4$	109.4 ± 0.6	$293.5{\pm}1.1$
tt, top	58 ± 3	62 ± 4	81 ± 4	177 ± 5	1991 ± 18
${ m W}({ m e} u)$	$788{\pm}221$	$1322{\pm}303$	$1480{\pm}310$	3591 ± 487	$7934 {\pm} 540$
${ m tt}\gamma$	48.3 ± 1.4	$55.3 {\pm} 1.7$	$74.6{\pm}1.8$	178 ± 3	746 ± 6
$\gamma+\mathrm{j}$	1829 ± 35	$2746 {\pm} 53$	$3549{\pm}51$	8123 ± 82	$63766{\pm}211$
Zj	$134{\pm}11$	115 ± 12	$165{\pm}13$	415 ± 21	$635{\pm}25$
${ m Z(ll)}\gamma$	56 ± 2	64 ± 2	92 ± 2	211 ± 4	$399{\pm}5$
$\mathrm{W}(au u)$	147 ± 20	$191{\pm}46$	$302{\pm}48$	640 ± 69	2222 ± 127
Total bkg.	$3973{\pm}225$	$5616{\pm}312$	$7190{\pm}318$	16779 ± 499	84380 ± 595
Stat. signif.	$35.6{\pm}0.6$	$35.8{\pm}0.6$	$41.8{\pm}0.6$	65.4 ± 0.6	$43.86 {\pm} 0.14$

<u>3) To show the estimates of fake rates from MC and data ($e \rightarrow \gamma$ estimation)</u>

fake rate	$150 < E_T^{\gamma} < 250 \text{ GeV}$	$E_T^{\gamma} > 250 \text{ GeV}$	$1.52 < \eta < 2.37$		150< <i>E</i> _T ^γ <250 GeV	<i>E</i> _τ ^γ >250 GeV
Z(ee) MC tag-n-probe	$\frac{0.0218 \pm 0.0004}{0.0218 \pm 0.0004}$	$0 < \eta < 1.57$ 0.0197 ± 0.0005	0.0762 ± 0.0012	0< η <1.37	0.0234±0.0006±0.0010	0.0193±0.0013±0.0038
<i>Z(ee)</i> MC mass window variation	0.0217 ± 0.0004	0.0198 ± 0.0005	0.0765 ± 0.0012	1.52< ŋ <2.37	0.0714±0.0	019±0.0074
Z(ee) MC "real"	0.022 ± 0.002	0.023 ± 0.002	0.084 ± 0.004			

<u>4) To show the difference between "real fake rate" in Z(ee) MC and tag-and-probe method (3rd question)</u>

Questions

<u>Preliminary answer</u>: This may be related to the distribution on the invariant mass of the Drell-Yan ee production. This shape is caused by the combination of reconstruction and identification efficiencies overlapped with the kinematic distribution on electron pT.

Motivation

• <u>Standard Model:</u>

- ⇒ A higher branching ratio of the neutral decay channel in comparison to the charged lepton decays of Z boson and better background control in comparison with the hadronic channel.
- ⇒ Previous study of this channel 36.1 fb⁻¹ data. Full Run2 statistics (140 fb⁻¹) → increase of measurement accuracy (expect the experimental sensitivity to increase by a factor of 2).

Goal:

To obtain integrated and differential cross-sections for 10 observables: E_T^{γ} , p_T^{miss} , N_{jets} , η_{γ} , $\Delta \phi(\gamma, p_T^{miss})$, $\Delta \phi(j_1, j_2)$, $\Delta R(Z, \gamma)$, p_T^{j1} , p_T^{j2} , $m_T^{Z\gamma}$ and compare the results with the theory predictions including NNLO QCD and NLO EWK corrections.

Glance: ANA-STDM-2018-54

- Beyond SM:
- To obtain the strongest up-to-date limits on anomalous neutral triple gauge-boson couplings (aTGCs) using vertex functions and EFT formalisms.
- \implies Possible combination of the EFT limits between Zy and ZZ.

Selection optimisation

- Topology: high-energetic photon and MET.
- Multivariate (MV) method of the selection optimization takes into account the signal significance S as a function of the threshold values of the variables:

$$S = N_{\rm signal} / \sqrt{N_{\rm signal} + N_{\rm bkg}}$$

The result of the MV optimization process is a set of threshold values for the variables that yield the maximum S.

ns Cut Value	<u>}</u>
> 130 GeV	7
> 150 GeV	/
ated photons $N_{\gamma} = 1$	
to $N_{\rm e} = 0, N_{\mu} =$	= 0 Ine
$N_{\tau} = 0$	
cance > 11	hv 3%
iss) > 0.6	5,070
^{iss}) > 0.3	

Beam-induced background suppression: $|\Delta z| < 250$ mm

The optimisation procedure is done for three different photon isolation working points FixedCutTight, FixedCutTightCaloOnly and FixedCutLoose.

		all cuts	preset. on
		Signal	
	$Z(\nu\nu)\gamma QCD$	10711 ± 8	13438±9
	$Z(\nu\nu)\gamma EWK$	166.3 ± 0.3	300.5 ± 0.4
	Total signal	10878 ± 8	13738 ± 9
]	Background	
	Wy QCD	3310 ± 21	6393±28
	$W\gamma EWK$	109.4 ± 0.6	293.5 ± 1.1
	tt, top	177 ± 5	1991±18
	W(ev)	3591 ± 487	7934 ± 540
	ttγ	178 ± 3	746 ± 6
	γ+j	8123 ± 82	63766±211
	Zj	415 ± 21	635 ± 25
	$Z(ll)\gamma$	211 ± 4	399 ± 5
	$W(\tau \nu)$	640 ± 69	2222±127
_	Total bkg.	16779 ± 499	84380±595
	Stat. signif.	65.4 ± 0.6	43.86±0.14

Background composition

Percentage of the data

Background composition for $Z(v\bar{v})\gamma$:

35% • γ + jets – fit to data in additional CR based on MET significance (shape from MC);

15% • $W(\rightarrow lv)\gamma$ and $tt\gamma$ – fit to data in additional CR based on N leptons (shape from MC);

11% • $e \rightarrow \gamma$ – fake-rate estimation using Z-peak (tag-n-probe) method;

8% • jet $\rightarrow \gamma$ – ABCD method based on photon ID and isolation (shape from Slice Method);

0.9% • Z(l⁺l⁻)γ – via MC;

- Background estimation method:
 - 1. Estimating e $\rightarrow \gamma$ fake-rate as $rate_{e \rightarrow \gamma} = rac{(N_{e\gamma} N_{bkg})}{(N_{ee} N_{bkg})}$,

where $N_{e\gamma}$, N_{ee} – number of ee and e γ events in Z-peak mass window (M_Z –10 GeV, M_Z +10 GeV), N^{bkg} – background in Z-peak mass window extrapolated from sideband with exponential pol1 or pol2 fit.

Additional Wy background rejection: $E_T^{miss} < 40$ GeV.

eγ pair selection:

signal region photon with p_T>150 GeV (probe), selected Tight electron with p_T>25 GeV (tag)

ee pair selection:

selected electron with p_T>150 GeV (probe), selected opposite sign Tight electron with p_T>25 GeV (tag)

Since fake rate depends on p_T and η (see backup), three regions are considered: $/\eta/<1.37$, $p_T<250$ GeV and $/\eta/<1.37$, $p_T>250$ GeV and $1.52</\eta/<2.37$ (flat distribution on p_T)

- 2. Building e-probe control region (CR): signal region with selected Tight electron with p_T>150 GeV instead of photon.
- 3. Scaling data distributions from e-probe CR by fake rate value.

$e \rightarrow \gamma \ misID \ background: systematics$

- Systematics on fake-rate estimation (ascending contribution):
- \Rightarrow Z peak mass window variation (varies from 0.3% to 0.7%).
- \Rightarrow Background under Z peak evaluation (varies from 3% to 14%).
- ⇒ Difference between "real fake rate" in Z(ee) MC and tag-andprobe method performed on Z(ee) MC (varies from from 3% to 15%).

	150< <i>Е</i> _т ^ү <250 GeV	<i>E</i> _T ^γ >250 GeV
0< η <1.37	0.0234±0.0006±0.0010	0.0193±0.0013±0.0038
1.52< η <2.37	0.0714±0.0019±0.0074	

First uncertainty is statistical, second is systematical.

Total systematics on fake-rate does not exceed 20%

Background estimation result:

Signal region 2608 ± 11 ± 162

Total syst. on the background yield: 6%

jet $\rightarrow \gamma$ misID background: ABCD-method

- A pair of photons from the decay of neutral mesons (typically a π^0), contained in hadronic jets, can give a signature of EM shower similar to a single isolated photon signature of the electromagnetic (EM) shower.
- Background is estimated from data using 2D-sideband method: <u>photon isolation and identification</u> <u>variables</u> are used to construct the sidebands.
- Correlation is measured in data and MC by $R = \frac{N_A N_D}{N_B N_C}$
- FixedCutLoose isolation working point is used with iso gap of 2 GeV
 In ABCD

R factor	loose'2	loose'3	loose'4	loose'5
MC	1.1 ± 0.2	1.1 ± 0.2	1.1 ± 0.2	1.4 ± 0.3

Cut, GeV	loose'2	loose'3	loose'4	loose'5
		MC		
4.5	1.18 ± 0.19	1.15 ± 0.16	1.08 ± 0.13	1.11 ± 0.13
7.5	1.12 ± 0.14	1.16 ± 0.13	1.10 ± 0.11	1.11 ± 0.11
10.5	1.15 ± 0.14	1.16 ± 0.13	1.11 ± 0.11	1.12 ± 0.11
Data-driven				
4.5	0.99 ± 0.11	1.05 ± 0.11	1.07 ± 0.09	1.09 ± 0.09
7.5	1.13 ± 0.11	1.09 ± 0.09	1.06 ± 0.08	1.05 ± 0.08
10.5	1.00 ± 0.10	0.99 ± 0.09	0.96 ± 0.07	0.96 ± 0.07

In B-E, E, D-F and F

	R _{data}	R'	R
loose'2	0.99 ± 0.11	1.18 ± 0.19	1.1 ± 0.2
loose'3	1.05 ± 0.11	1.15 ± 0.16	1.1 ± 0.2
loose'4	1.07 ± 0.09	1.08 ± 0.13	1.1 ± 0.2
loose'5	1.09 ± 0.09	1.11 ± 0.13	1.4 ± 0.3

Isolation should not

correlate with non-

tight ID!

 $N_{\rm C}$

 $N^{\text{jet} \to \gamma}$

Resulting R for MC and data

jet $\rightarrow \gamma$ misID background: uncertainties

- Statistical uncertainty:
- \Rightarrow The event yields of four regions in data and non jet $\rightarrow \gamma$ background are varied by ±1 σ independently (9%).
- ⇒ The statistical uncertainty on the signal leakage parameters is negligible. Total statistics: 9%.
- Systematic uncertainty :
 - \Rightarrow Anti-tight definition and isolation gap choice variations of ABCD regions determination by ±1 σ changes in data yield (14%).
- \Rightarrow The deviations from the nominal value from varying R factor by ± 0.10 (10%).
- \Rightarrow Uncertainty coming from the signal leakage parameters is obtained via using different generators and parton shower models (0.7%).

Signal leakage parameters	MadGraph+Pythia8, Sherpa 2.2	<pre>MadGraph+Pythia8, MadGraph+Pythia8</pre>	Relative deviation
c _B	$(278 \pm 4) \cdot 10^{-5}$	$(47 \pm 2) \cdot 10^{-4}$	7%
CC	$(3205 \pm 14) \cdot 10^{-5}$	$(330 \pm 6) \cdot 10^{-4}$	3%
c _D	$(178 \pm 11) \cdot 10^{-6}$	$(39 \pm 5) \cdot 10^{-5}$	120%
$jet \rightarrow \gamma$ estimation	1765	1752	0.7%

- ⇒ The iso/ID uncertainty on reconstruction photon efficiency δ_{eff} ^{iso/ID} (1.3%). Total systematics: 17%.
 - Total number of jet $\rightarrow \gamma$ events: 1770 ± 160 ± 300. Z(vv)+jets and multi-jet MC predicts 2000 ± 1300 events.

Central value	1765^{+164}_{-160}
Loose'2	+240
Loose'4	+85
Loose'5	-55
Isolation gap +0.3 GeV	-60
Isolation gap -0.3 GeV	+33

Central value	1765^{+164}_{-160}
$R + \Delta R$	+180
$R - \Delta R$	-178

- The jet $\rightarrow \gamma$ background shape cannot be properly modeled with MC. For this reason, the shape of jet $\rightarrow \gamma$ background is estimated via slice method. Photon isolation
- The proposed slice method splits the phase space into four orthogonal regions based on kinematic cuts and the photon isolation.
- The non-isolated regions are split into a set of successive intervals (slices) based on the photon isolation.
- Four isolation slices are chosen: [0.065, 0.090, 0.115, 0.140, 0.165].

$$N_{\text{CR1(i)}}^{jet \to \gamma} = N_{\text{CR1(i)}}^{\text{data}} - N_{\text{CR1(i)}}^{Z(\nu\bar{\nu})\gamma} - N_{\text{CR1(i)}}^{\text{bkg}}$$

$$H_{jet \to \gamma}^{[0.A,0.B]} = H_{data}^{[0.A,0.B]}[X] - H_{sig}^{[0.A,0.B]}[X] - H_{bkg}^{[0.A,0.B]}[X]$$

The jet $\rightarrow \gamma$ shape in the SR: $H_{jet \rightarrow \gamma}^{SR} = H_{jet \rightarrow \gamma}^{[0.065, 0.09]}[X] + \Delta^{CR2}[X]$

Kinematic selections

$$\Delta^{CR2}[X] = \frac{1}{2} \left(\frac{H_{jet \to \gamma}^{[0.065, 0.09]}[X] - H_{jet \to \gamma}^{[0.115, 0.14]}[X]}{2} + \frac{H_{jet \to \gamma}^{[0.09, 0.115]}[X] - H_{jet \to \gamma}^{[0.14, 0.165]}[X]}{2} \right)$$

The correction term

- Using the Asimov data: μ_{Zv} = 1.00 ± 0.08 , μ_{Wv} = 0.93 ± 0.12 and μ_{vi} = 0.74 ± 0.10. Expected signal significance 69 σ .
- Fit in the SR and CRs:

 \Rightarrow $\mu_{Z_V} = 0.70 \pm 0.06$, $\mu_{W_V} = 0.92 \pm 0.06$ and $\mu_{v_i} = 0.88 \pm 0.08$. Observed signal significance 50 σ .

Background only + max. symm.

Asimov

Observed

ATLAS Internal

	tty scale
	t_{γ} NNPDE upc + α
	$i \rightarrow v$ syst
	Zlly scale
	$Z(II) \times NNPDE upc + \alpha$
	Zy QCD scale
	$Z\gamma$ QCD NNPDF unc. + α
	Zγ QCD alternative PDF
	Zγ EWK scale
	$Z\gamma$ EWK NNPDF unc. + α
	Zγ EWK alternative PDF
	Wy QCD scale
	Wy QCD NNPDF unc. + α
	Wγ QCD alternative PDF [°]
	Wy EWK scale
• • • • • • • • • • • • • • • • • • •	Wy EWK NNPDF unc. + α_s
	Wγ EWK alternative PDF
	Trigger efficiency
· · · · · · · · · · · · · · · · · · ·	MUON_SAGITTA_RESBIAS
· · · · · · · · · · · · · · · · · · ·	MET_SoftTrk_Scale
	MET_SoftTrk_ResoPerp
	MET_SoftTrk_ResoPara
	JET_Pileup_RhoTopology
	JEI_Pileup_PtTerm
	JET_Pileup_OffsetNPV
	JET_htemp_offsetimu
	JET_JVLEINCIENCY
	JET_JER_EllectiveNP_/restrerm
	JET_JER_EffectiveNP_5
	IET_IER_EffectiveNP_3
	JET JER EffectiveNP 3
	JET JER EffectiveNP 2
	JET JER EffectiveNP 1
	JET JER DataVsMC MC16
	JET_Flavor_Response
	JET_Flavor_Composition
••	JET_EtaIntercalibration_Modelling
	EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR
	EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR
	EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR
	EG_SCALE_ALL
<u> </u>	EG_RESOLUTION_ALL
-2 -1 0 1 2	
$(\hat{\theta} - \theta_{o})/\Delta \theta$	

ATLAS Internal

TLAS	Internal		ATLAS	Internal		
· · · l ·		ttγ scale ttγ NNPDE μnc. + α		····	ttγ so	ale
		i→v svst		•	ttγ N	NPDF unc. + α_s
		e →v svst		• • • • • • • • • • • • • • • • • • •	J→γ s	syst
		Zilv scale		· · · · · · · · · · · · · · · · · · ·	e→γ	syst
		$Z(I)$ NNPDE unc + α		••••••	Zllγ s	cale
		Zilv alternative PDF		•	Z(II)γ	NNPDF unc. + α_s
		Zv OCD scale		• • • • • • • • • • • • • • • • • • •	Zllγ a	Iternative PDF
		Z_{γ} QCD NNPDF unc. + α		• •	Zγ Q	CD scale
		Zy OCD alternative PDF		•	Zγ Q	CD NNPDF unc. + α_s
		Zy EWK scale		• • • • • • • • • • • • • • • • • • •	ZγQ	CD alternative PDF
		Z_{γ} EWK NNPDF unc. + α		•	ΖγΕ	WK scale
		Zy EWK alternative PDF		•	ΖγΕ	WK NNPDF unc. + α_s
		Wy QCD scale		•	ΖγΕ	WK alternative PDF
	_	Wy QCD NNPDF unc. + α		_	WγC	α CD NNPDF unc. + α_s
		Wy QCD alternative PDF		• • • • • • • • • • • • • • • • • • •	WγC	CD alternative PDF
		Wy EWK scale		•	Wγ E	WK scale
		Wy EWK NNPDF unc. + α		•	Wγ E	WK NNPDF unc. + α_s
	_	Wy EWK alternative PDF		•	WγE	WK alternative PDF
	_	Trigger efficiency		•	Trigg	er efficiency
	_	MUON SAGITTA RESBIAS		•••••	MUC	N_SAGITTA_RESBIAS
	_	MET_SoftTrk_Scale		• • • • • • • • • • • • • • • • • • •	MEI	SoftTrk_Scale
		MET SoftTrk ResoPerp		• <u> </u>	MET	_SoftTrk_ResoPerp
		MET_SoftTrk_ResoPara		•	MET	_SoftTrk_ResoPara
	_	JET PunchThrough MC16			JET_	PunchThrough_MC16
	· · · · · · · · · · · · · · · · · · ·	JET Pileup RhoTopology		• • • •	JET_	Pileup_RhoTopology
	• • • • • • • • • • • • • • • • • • •	JET_Pileup_PtTerm		• • •	JET_	Pileup_PtTerm
	_	JET Pileup OffsetNPV			JET_	Pileup_OffsetNPV
	· · · · · · · · · · · · · · · · · · ·	JET_Pileup_OffsetMu			JET_	Pileup_OffsetMu
	_	JET_JvtEfficiency			JET_	JvtEfficiency
	•	JET_JER_EffectiveNP_7restTerm		••••••••••••••••••••••••••••••••••••••	JET_	JER_EffectiveNP_7restTerm
	•••••	JET_JER_EffectiveNP_6		•	JET_	JER_EffectiveNP_6
	_	JET_JER_EffectiveNP_5		•	JEI_	JER_EffectiveNP_5
	•	JET_JER_EffectiveNP_4		• <u>•</u> ••••••••••••••••••••••••••••••••••	JET_	JER_EffectiveNP_4
	_	JET_JER_EffectiveNP_3		• • • • • • • • • • • • • • • • • • •	JEI_	JER_EffectiveNP_3
	· · · · · · · · · · · · · · · · · · ·	JET_JER_EffectiveNP_2		•	JEI_	JER_EffectiveNP_2
	· · · · · · · · · · · · · · · · · · ·	JET_JER_EffectiveNP_1			JEI_	JER_EffectiveNP_1
	• • • • • • • • • • • • • • • • • • •	JET_JER_DataVsMC_MC16		•	JEI_	JER_DataVSMC_MC16
		JET_Flavor_Response		• • • • • • • • • • • • • • • • • • •	JEI_	Flavor_Response
	• • • • • • • • • • • • • • • • • • •	JET_Flavor_Composition		••••	JEI_	Flavor_Composition
	•••••	JET_EtaIntercalibration_Modelling				Etaintercalibration_Modelling
	•	LL_EFF_Reco_TOTAL_1NPCOR_F				FF_NECO_IVIAL_INFOR_FLUS_UNCOR
	•	EL_EFF_ISO_TOTAL_1NPCOR_PLI				
	•	LEL_EFF_ID_IOTAL_INPCOR_PLU				
	•	EG_SCALE_ALL		•	EG_3	
		EG_RESOLUTION_ALL			EG_I	RESOLUTION_ALL
-2	-1 0 1	2	-2	-1 0 1	2	
	(θ̂-θ ₀)/∆θ			$(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) / \Delta \boldsymbol{\theta}$		

MEPhI@Atlas meeting 12.04.2024

14/18

Unfolding and differential measurement

- The goal of unfolding is to take the measured observable and translate it into the true observable.
- The response matrix R relates true vector x and observed vector y: $\hat{R}\mathbf{x} = \mathbf{y}$
- $N^{\text{det.}} \cap \text{fid.}$ Migration matrix: $M_{ij} = \frac{m_{ij}}{N^{\text{det.}} \cap \text{fid.}}$ The response matrix is defined as: $R_{ij} = \frac{1}{\alpha_i} \varepsilon_j M_{ij}$
- The unfolding procedure is performed according to the maximum likelihood method via TRExFitter. $N^{\mathrm{unfold}}_{\cdot}$
- The differential cross-section is defined by equation:

 σ_i

 Δx_i

 $\mathcal{L}dt$) · Δx_i

MEPhI@Atlas meeting 12.04.2024

aTGC: introduction

- Z(vv)γ production is very sensitive to the neutral triple gauge couplings (aTGCs). aTGCs are zero in the SM at the tree level.
- Two ways to describe aTGCs: effective field theory and vertex function approach.
 Both formalisms were improved by theorists and new terms in both formalisms appear.

State-of-the-art UFO models are needed to generate the events. For both formalisms models with new terms were created. EFT: model NTGC_all, <u>JIRA ticket</u>. VF: model NTGC_VF, <u>JIRA ticket</u>.

EFT: 6 Wilson coefficients (C_{G+}/Λ^4 , C_{G-}/Λ^4 , C_{BW}/Λ^4 , C_{BW}/Λ^4 , C_{BB}/Λ^4 , C_{WW}/Λ^4).

VF: 12 parameters (h_i^{V} ; i=1...6; V=Z, γ). Only i=3..5 are planned to be constrained.

aTGC: current results

- Plan is to search for CP-conserving effects only. Search for CP-violating effects requires identification of the decay products.
- EFT samples were prepared, VF samples request in progress.
- Strategy: reco-level fit of the E_T^{γ} distribution. Preliminary results:

Coefficient	Expected limits [TeV ⁻⁴]
C_{G+}/Λ^4	[-0.0065; 0.0047]
C_{G-}/Λ^4	[-0.30; 0.34]
$C_{ ilde{B}W}/\Lambda^4$	[-0.35; 0.34]
C_{BW}/Λ^4	[-0.63; 0.63]
C_{BB}/Λ^4	[-0.25; 0.25]
C_{WW}/Λ^4	[-1.3; 1.3]

 $\mathsf{E}^{\gamma}_{\mathsf{T}}$ [TeV]

Summary

• All steps of inclusive Z($v\bar{v}$) γ Run2 analysis are already done: selection optimisation, datadriven estimation of e $\rightarrow \gamma$ and jet $\rightarrow \gamma$, fit procedure, control plots, unfolding, differential cross-sections.

Plans:

- \Rightarrow To solve problems systematics.
- \Rightarrow To update and to obtain other observables differential cross-section plots.
- \Rightarrow To continue work on limits on aTGCs.
- \Rightarrow Almost all chapters of the internal note are ready, but need update.
- \Rightarrow EB request ASAP.

Thank you for your attention!

- Using the Asimov data: μ_{Zy} = 1.00 ± 0.07, μ_{Wy} = 1.00 ± 0.18 and μ_{yi} = 0.70 ± 0.06. Expected signal significance 69 σ .
- Fit in the SR and CRs:

 \Rightarrow μ_{Zv} = 0.90 ± 0.13, μ_{Wv} = 0.97 ± 0.06 and μ_{vi} = 0.84 ± 0.05. Observed signal significance 64 σ .

There are some problems with jet systematics!

MEPhI@Atlas meeting 12.04.2024

Problems with template fit

ATLAS Internal

Katerina Kazakova

MEPhI@Atlas meeting 12.04.2024

Problems with template fit: categorisation

There was an attempt to categorise the events based on N_{iets} in the gj CR (background only fit)

 $\implies \mu_{W\gamma}$ = 1.06 ± 0.04, $\mu_{\gamma j(0)}$ = 0.78 ± 0.09, $\mu_{\gamma j(1)}$ = 0.72 ± 0.09 and $\mu_{\gamma j(2)}$ = 0.73 ± 0.14.

more information in back-up

Wy QCD scale: decorrelation

Wy CR causes the shift The central value is ~0.5 with all systematics adding \rightarrow no problem?

MEPhI@Atlas meeting 12.04.2024

Zy QCD scale: decorrelation

Not clear what's going wrong

MEPhI@Atlas meeting 12.04.2024

Fit in all CRs with gj sample

ATLAS Internal

Fit in all CRs w/o gj sample

ATLAS Internal

Fit in all CRs with gj sample with cut on MET signif < 9 in gj CR

ATLAS Internal

Fit in all CRs with gj sample with cut on pT soft term

ATLAS Internal

Reproc 21-02-23 with softterm

Reproc 03-11-23 w/o softterm

Problems with template fit: categorisation

• There was an attempt to categorise the events based on N_{iets} in the gj CR (background only fit)

 $\implies \mu_{W_{Y}} = 1.06 \pm 0.04$, $\mu_{\gamma i(0)} = 0.78 \pm 0.09$, $\mu_{\gamma i(1)} = 0.72 \pm 0.09$ and $\mu_{\gamma i(2)} = 0.73 \pm 0.14$.

Beam-induced background (BIB)

- Muons from pion and kaon decays in hadronic showers, induced by beam losses in non-elastic collisions with gas and detector material, deposit large amount of energy in calorimeters through radiative processes (= fake jets).
- The characteristic peaks of the fake jets due to BIB concentrate at $\pm \pi$ and 0 (mainly due to the bending in the horizontal plane that occurs in the D1 and D2 dipoles and the LHC arc).

Selection optimisation

Variable	1	2	3	4
$E_T^{miss} signif.$		> 11		
$\Delta \phi(E_T^{miss}, \gamma)$		> 0.6		—
$\Delta \phi(E_T^{miss}, j_1)$		> 0.3		
E_T^{miss} , GeV		>130		—
		Signal		
$Z(\nu\nu)\gamma QCD$	9928 ± 8	10021 ± 8	10711 ± 8	13934 ± 9
$Z(\nu\nu)\gamma EWK$	151.6 ± 0.3	153.6 ± 0.3	166.3 ± 0.3	312.3 ± 0.4
Total signal	10080±8	10175 ± 8	10878 ± 8	14247 ± 9
		Background		
Wγ QCD	3022 ± 20	3061 ± 20	3310 ± 21	6795 ± 29
$W\gamma EWK$	99.9 ± 0.6	101.3 ± 0.6	109.4 ± 0.6	309.8 ± 1.1
tt, top	156 ± 5	176 ± 5	201 ± 6	2800 ± 22
$W(e\nu)$	3091 ± 453	3409 ± 521	3591 ± 487	8540 ± 663
ttγ	161 ± 3	163 ± 3	178 ± 3	787 ± 6
γ+j	7642 ± 79	7757 ± 80	8123 ± 82	67517 ± 217
Zj	221 ± 16	328 ± 20	415 ± 21	2583 ± 50
$Z(ll)\gamma$	197 ± 4	200 ± 4	211 ± 4	426 ± 5
$W(\tau \nu)$	412 ± 65	575 ± 72	640 ± 69	4615 ± 138
Total bkg.	15002 ± 465	15770 ± 533	16779 ± 499	94373 ± 714
Stat. signif.	63.6 ± 0.6	63.2 ± 0.6	65.4 ± 0.6	43.23 ± 0.14

Table 33: The results of selection optimisation at three different working points *FixedCutTight*, *FixedCutTightCaloOnly*, *FixedCutLoose*.

MEPhI@Atlas meeting 12.04.2024

Selection optimisation

	$E_T^{miss} signif.$	$E_T^{miss}signif.$	$E_T^{miss}signif.$	E_T^{miss} signif.	$E_T^{miss} signif.$
	E_T^{miss} , GeV				
	$\Delta \phi(E_T^{miss}, \gamma)$				
	$\Delta \phi(E_T^{miss}, j_1)$				
		Sig	nal		
$Z(\nu\nu)\gamma QCD$	10711 ± 8	12307±9	10819±8	10728±8	10849±8
$Z(\nu\nu)\gamma EWK$	166.3 ± 0.3	251.5±0.4	167.6±0.3	168.3±0.3	171.0±0.3
Total signal	10878 ± 8	12559 ± 9	10987±8	10897 ± 8	11020±8
		Backg	ground		
Wy QCD	3310 ± 21	4741±24	3385±21	3389±21	3440±22
$W\gamma EWK$	109.4 ± 0.6	210.4±0.9	111.2±0.6	112.8±0.7	115.3±0.7
tt, top	177 ± 5	631±10	204±6	267±7	209±6
$W(e\nu)$	3591 ± 487	4372±517	3827±506	3883±487	3627±487
ttγ	178 ± 3	508±5	179±3	183±3	192±3
γ+j	8123 ± 82	24991±139	8552±84	8156±82	9668±86
Zj	415 ± 21	546±24	419±21	417±21	428±21
$Z(ll)\gamma$	211 ± 4	284±4	216±4	212±4	231±4
$W(\tau \nu)$	640 ± 69	945±100	651±69	821±70	655±69
Total bkg.	16779 ± 499	37229 ± 546	17544 ± 518	17440 ± 499	18566 ± 500
Stat. signif.	65.4 ± 0.6	56.3±0.3	65.0±0.6	64.7±0.6	64.1±0.5

Table 34: Comparison of statistical significance and event returns when each of the optimised variables is excluded. The excluded variable is highlighted in red.

MEPhI@Atlas meeting 12.04.2024

Selections	Cut Value
$E_{ m T}^{ m miss}$	> 130 GeV
$E_{\mathrm{T}}^{e-probe}$	> 150 GeV
Number of loose non-isolated photons	$N_{\gamma} = 0$
Number of tight probe electrons	$N_{e-probe} = 1$
Lepton veto	$N_{\mu} + N_{\tau} = 0$
$E_{\rm T}^{ m miss}$ significance	> 11
$ \Delta \phi(e - probe, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) $	> 0.6
$ \Delta \phi(j_1, \vec{p}_{\rm T}^{\rm miss}) $	> 0.3

Table 5: Event selection criteria for e-probe CR events.

]	Event yield	real $e + E_{\rm T}^{\rm miss}$ (MC)	fake $e + E_{\rm T}^{\rm miss}$ (MC)	data
(e-probe CR	78079 ± 4078	465 ± 34	74076

Table 6: Event yields for real $e + E_T^{\text{miss}}$ and fake $e + E_T^{\text{miss}}$ prediction and observed data in probe-electron control regions. Indicated uncertainties are statistical.

fake rate	$150 < E_T^{\gamma} < 250 \text{ GeV}$	$E_T^{\gamma} > 250 \text{ GeV}$	1.50 < m < 0.27	Total
	$0 < \eta < 1.37$	$0 < \eta < 1.37$	$1.52 < \eta < 2.57$	
syst. on fake-rate estimation.	4%	20%	10%	
syst. from stat. unc. on fake-rate	3%	7%	3%	
syst. from impurity of CR	0.16%	0.16%	0.16%	
Total rel. syst.	5%	21%	10%	
Event yield in (incl.) e-probe CR	49673	11492	20855	
Fake-rate	0.0234	0.0193	0.0714	
$e \rightarrow \gamma$ event yield in SR	1062	200	1345	2608
Total abs. syst.	58	42	134	162

Table 35: Systematics breakdown for $e \rightarrow \gamma$ background for SR.

Missing transverse momentum is calculated as the sum of the following terms:

$$E_{\mathbf{x}(\mathbf{y})}^{\text{miss}} = E_{\mathbf{x}(\mathbf{y})}^{\text{miss},e} + E_{\mathbf{x}(\mathbf{y})}^{\text{miss},\mu} + E_{\mathbf{x}(\mathbf{y})}^{\text{miss},\tau_{\text{had}}} + E_{\mathbf{x}(\mathbf{y})}^{\text{miss},\gamma} + E_{\mathbf{x}(\mathbf{y})}^{\text{miss},\text{jets}} + E_{\mathbf{x}(\mathbf{y})}^{\text{miss},\text{SoftTerm}},$$

fake rate	$150 < E_T^{\gamma} < 250 \text{GeV}$	$E_T^{\gamma} > 250 \text{ GeV}$	1.52 < m < 2.27
	$0 < \eta < 1.37$	$0 < \eta < 1.37$	$1.52 < \eta < 2.57$
Z(ee) MC tag-n-probe	0.0218 ± 0.0004	0.0197 ± 0.0005	0.0762 ± 0.0012
Z(ee) MC mass window variation	0.0217 ± 0.0004	0.0198 ± 0.0005	0.0765 ± 0.0012
Z(ee) MC "real"	0.022 ± 0.002	0.023 ± 0.002	0.084 ± 0.004
$T_{-1} = 12$	way to whateve false water	ation at a line MC	

Table 33: Electron-to-photon fake rates estimated in MC.

fake rate	$150 < E_T^{\gamma} < 250 \text{ GeV}$	$E_T^{\gamma} > 250 \text{ GeV}$	1.52 < m < 2.27
	$0 < \eta < 1.37$	$0 < \eta < 1.37$	$1.52 < \eta < 2.57$
syst. from mass window var.:	0.3%	0.7%	0.4%
syst. from tag-n-probe and real f.r.:	3%	15%	10%
Background fit variation	4%	14%	3%
Total syst.:	4%	20%	10%

Table 34: Electron-to-photon fake rate systematics components.

MEPhI@Atlas meeting 12.04.2024

Katerina Kazakova

MEPhI@Atlas meeting 12.04.2024

$\rightarrow \gamma$ misID background: ABCD method et

- Tight and isolated region (region A equivalent to $Z\gamma$ signal region described in Sec. 4.7): events have a leading photon candidate that is isolated $(E_T^{\text{cone}20} - 0.065 p_T^{\gamma} < 0 \text{ GeV})$ and passes the *tight* selection.
- Tight but not isolated region (control region B): events have a leading photon candidate that is not isolated $(E_{\rm T}^{\rm cone20} - 0.065 p_{\rm T}^{\gamma})$ iso gap) and passes the *tight* selection.
- Non-tight and isolated region (control region C): events have a leading photon candidate that is isolated $(E_T^{\text{cone20}} - 0.065 p_T^{\gamma} < 0 \text{ GeV})$ and passes the *non-tight* selection.
- Non-tight and not isolated region (control region D): events have a leading photon candidate that is not isolated $(E_T^{\text{cone20}} - 0.065 p_T^{\gamma} > \text{iso gap})$ and passes the *non-tight* selection.

• loose'2:
$$w_{s3}$$
, F_{side}

- loose'3: w_{s3} , F_{side} , ΔE
- loose'4: w_{s3} , F_{side} , ΔE , E_{ratio}
- loose'5: w_{s3} , F_{side} , ΔE , E_{ratio} , w_{tot} ,

 ± 0.6

$$N_{A} = N_{A}^{Z(\nu\bar{\nu})\gamma} + N_{A}^{bkg} + N_{A}^{jet \to \gamma}; \qquad c_{B} = \frac{N_{B}^{Z(\nu\bar{\nu})\gamma}}{N_{A}^{Z(\nu\bar{\nu})\gamma}}; \qquad A_{A} = c_{D} - Rc_{B}c_{C}; \qquad a = c_{D} - Rc_{B}c_{C}; \qquad b = \tilde{N}_{D} + c_{D}\tilde{N}_{A} - R(\tilde{N}_{B} - c_{D}N_{A}^{Z(\nu\bar{\nu})\gamma}); \qquad A_{A} = c_{D} - Rc_{B}c_{C}; \qquad b = \tilde{N}_{D} + c_{D}\tilde{N}_{A} - R(c_{B}\tilde{N}_{C} + c_{C}\tilde{N}_{B}); \qquad c_{D} = \frac{N_{C}^{Z(\nu\bar{\nu})\gamma}}{N_{A}^{Z(\nu\bar{\nu})\gamma}}; \qquad C_{D} = \frac{N_{D}^{Z(\nu\bar{\nu})\gamma}}{N_{A}^{Z(\nu\bar{\nu})\gamma}}; \qquad C_{D} = \frac{N_{D}^{Z(\nu\bar{\nu})\gamma}}}{N_{A}^{Z(\nu\bar{\nu})\gamma}}; \qquad C_{D} = \frac{N_{D}^{Z(\nu\bar{\nu})\gamma}}{N_{A}^{Z(\nu\bar{\nu})\gamma}}; \qquad C_{D} = \frac{N_{D}^{Z(\nu\bar{\nu})\gamma}}{N_{A}^{Z(\nu\bar{\nu})\gamma}}; \qquad C_{D} = \frac{N_{D}^{Z(\nu\bar{\nu})\gamma}}}{N_{A}^{Z(\nu\bar{\nu})\gamma}}; \qquad C_{D} = \frac{N_{D}^{Z(\nu\bar{\nu})\gamma}}}{N_{A}^{Z(\nu\bar{\nu})\gamma}}; \qquad C_{D} = \frac{N_{D}^{Z(\nu\bar{\nu})\gamma}}}{N_{A}^{Z(\nu\bar{\nu})\gamma}}; \qquad C_{D} = \frac{N_{D}^{Z(\nu\bar{\nu})\gamma}}{N_{A}^{Z(\nu\bar{\nu})\gamma}}; \qquad C_{D} = \frac{N_{D}^{Z(\nu\bar{\nu})\gamma}}}{N_{A}^{Z(\nu\bar{\nu})\gamma}}; \qquad C_{D} = \frac{N_{D}^{Z(\nu\bar{\nu})\gamma}}}{N_{A}^{Z(\nu\bar{\nu})\gamma}}; \qquad C_{D} = \frac{N_{D}^{Z(\nu\bar{\nu})\gamma}}{N_{A}^{Z(\nu\bar{\nu})\gamma}}; \qquad C_{D} = \frac{N_{D}^{Z(\nu\bar{\nu})\gamma}}}{N_{A}^{Z(\nu\bar{\nu})\gamma}}; \qquad C_{D$$

MEPhl@Atlas meeting 12.04.2024

Photon isolation

To take into account the dependence of the estimate on the photon isolation, the non-isolated regions are split into a set of into successive intervals (slices) based on the photon isolation. In this way, the number of $jet \rightarrow \gamma$ background events in each non-isolated slice *i* of the CR1 $N_{CR1(i)}^{jet \rightarrow \gamma}$ is derived as follows:

 $N_{\text{CR1(i)}}^{jet \to \gamma} = N_{\text{CR1(i)}}^{\text{data}} - N_{\text{CR1(i)}}^{Z(\nu\bar{\nu})\gamma} - N_{\text{CR1(i)}}^{\text{bkg}},$

Four isolation slices are chosen: [0.065, 0.090, 0.115, 0.140, 0.165].

$$H_{jet \to \gamma}^{[0.A,0.B]} = H_{data}^{[0.A,0.B]}[X] - H_{sig}^{[0.A,0.B]}[X] - H_{bkg}^{[0.A,0.B]}[X],$$

$$\begin{split} \Delta^{CR2}[X] &= \frac{1}{2} \left(\frac{H^{[0.065, 0.09]}_{jet \to \gamma}[X] - H^{[0.115, 0.14]}_{jet \to \gamma}[X]}{2} + \frac{H^{[0.09, 0.115]}_{jet \to \gamma}[X] - H^{[0.14, 0.165]}_{jet \to \gamma}[X]}{2} \right) \\ H^{SR}_{jet \to \gamma} &= H^{[0.065, 0.09]}_{jet \to \gamma}[X] + \Delta^{CR2}[X]. \end{split}$$

CR1	CR2
E _T ^{miss} < 130 GeV or	E _T ^{miss} > 130 GeV
ET ^{MISS} sig. < 8 or	E _T ^{miss} sig. > 11
Δφ(p _T ^{miss} , γ) < 0.6 or	Δφ(p _T ^{miss} , γ) > 0.6
Δφ(p _T ^{miss} , j ₁) < 0.3	$ \Delta \varphi(\mathbf{p}_T^{miss}, \mathbf{j}_1) > 0.3$
Tight	Tight
Non-isolated	Non-isolated
CR3 (FR) ⁺ T	SR ⁺ T
E _T ^{miss} < 130 GeV or	ET ^{MISS} > 130 GeV
ET ^{MISS} sig. < 8 or	ET ^{MISS} sig. > 11
Δφ(p _T ^{miss} , γ) < 0.6 or	Δφ(p _T ^{miss} , γ) > 0.6
Δφ(p _T ^{miss} , j ₁) < 0.3	Δφ(p _T ^{miss} , j ₁) > 0.3
Tight	Tight
Isolated	Isolated

Kinematic selections

MEPhl@Atlas meeting 12.04.2024

The detailed procedure of $jet \rightarrow \gamma$ background shape estimation is presented in Section 5.2.2. To increase the statistics in the anti-isolated slices, the cut on track isolation is relaxed. Figure 51 shows that the shape of the $jet \rightarrow \gamma$ distribution in the SR does not change when relaxing track isolated in the CR2. Figure 52 shows that the shape of the $jet \rightarrow \gamma$ distribution for $E_{\rm T}^{\rm miss}$ in the SR does not change when relaxing cut on $E_{\rm T}^{\rm miss}$ significance in the CR2.

Correction factor	Value
$A_{Z\gamma}$	0.9049 ± 0.0008
$C_{Z\gamma}$	0.7487 ± 0.0007

The unfolding procedure by folding can be performed with following steps: • Myltiplying the response matrix \hat{R} and the particle-level distribution:

$$F_{ij} = R_{ij} \cdot T_j = \begin{pmatrix} \vec{r}_1 \\ \vec{r}_1 \\ \vdots \\ \vec{r}_n \end{pmatrix} \cdot \begin{pmatrix} t_1 \\ t_1 \\ \vdots \\ t_n \end{pmatrix} = \begin{pmatrix} \vec{f}_1 \\ \vec{f}_1 \\ \vdots \\ \vec{f}_n \end{pmatrix},$$

• Myltiplying each of the *n* histograms by the NFs $\mu_j = (\mu_1, \mu_2, ..., \mu_n)$:

$$G_{ij} = F_{ij} \cdot \mu_j = \begin{pmatrix} \vec{f_1} \\ \vec{f_1} \\ \vdots \\ \vec{f_n} \end{pmatrix} \cdot \begin{pmatrix} \mu_1 \\ \mu_1 \\ \vdots \\ \mu_n \end{pmatrix} = \begin{pmatrix} \vec{g_1} \\ \vec{g_1} \\ \vdots \\ \vec{g_n} \end{pmatrix}$$

The next step is to add all vecors \vec{g}_j . As a result we get one histogram with *m* bins.

- Fit the folded distribution by tuning NFs μ_j . As a result one gets the fitted parameters $\mu'_j = (\mu'_1, \mu'_2, \dots, \mu'_n)$.
- Dot multiply normalised NFs and truth histogram.

	Fiducial region:	
Category	Cut	$f(\sigma, \theta, \lambda) = \prod P\left(N_{i} f_{int} \sum \mathcal{R}_{i}(\vec{\theta})\sigma_{i}(\vec{\theta}) + \mathcal{R}_{i}(\vec{\theta}, \lambda)\right) \times \prod G(\theta_{i})$
Photons	Isolated, $E_{\rm T}^{\gamma} > 150 {\rm GeV}$	$\mathcal{Z}(0,0,n) = \prod_{i} \prod_{i} \prod_{j=1}^{n} \left(\sum_{i=1}^{n} \lambda_{ij}(0,0) \int (0,n) \int ($
	$ \eta < 2.37$ excluding $1.37 < \eta < 1.52$	$M = C = \sigma$ with $\sigma = \omega \sigma MC$
Jets	$ \eta < 4.5$	$N_j = \mathcal{L}_{int} \sigma_j$ with $\sigma_j = \mu_j \sigma_j$
	$p_{\rm T} > 50 { m ~GeV}$	$(-\tau^2 i + 2 < N_{\text{bins}})$
	$\Delta R(jet, \gamma) > 0.3$	$\mathcal{L}(\sigma, \theta, \lambda) = \mathcal{L}(\sigma, \theta, \lambda)_{\text{noreg.}} \times \left[-\frac{i}{2} \sum_{i=1}^{n} ((\mu_i - \mu_{i-1}) - (\mu_{i+1} - \mu_i))^2 \right]$
Lepton	$N_l = 0$	$\left(\begin{array}{c} 2 \\ i=2 \end{array}\right)$
Neutrino	$p_{\mathrm{T}}^{\nu\bar{\nu}} > 130 \mathrm{GeV}$	A <i>t</i> unfold
Events	$ \Delta \phi(\vec{p}_{\rm T}^{\rm miss}, \gamma) > 0.7$	$\frac{\sigma_j}{\sigma_j}$ _ $\frac{N_j}{\sigma_j}$
	$ \Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, j_1) > 0.4$	$\Delta x_i = (\int \mathcal{L} dt) \cdot \Delta x_i$
	$p_{\rm T}^{\nu\bar{\nu}}$ significance > 11	

Observable	Binning
p_{T}^{γ}	[150, 200], [200, 250], [250, 350], [350, 450], [450, 600], [600, 1100]
$E_{ m T}^{ m miss}$	[130, 200], [200, 250], [250, 350], [350, 450], [450, 600], [600, 1100]
N _{jets}	[-0.5, 0.5], [0.5, 1.5], [1.5, 2.5], [2.5, 7.5]
η_{γ}	[-3, -2, -1, 0, 1, 2, 3]
$p_T^{j_1}$	[50, 100, 150, 250, 350, 450, 600, 1100]
$p_T^{j_2}$	[50, 100, 150, 250, 350, 450, 600, 1100]
$ \Delta \phi(j,j) $	[0.0 - 3.2], 16 bins
$ \Delta \phi(p_{\mathrm{T}}^{\mathrm{miss}}, j) $	[0.4 - 3.2], 14 bins

Table 29: Summary of the differential measurements in the analysis

Extended fiducial region:

Category	Cut
Photons	Isolated, $E_{\rm T}^{\gamma} > 150 {\rm GeV}$
	$ \eta < 2.37$
Jets	$ \eta < 4.5$
	$p_{\rm T} > 50 { m ~GeV}$
	$\Delta R(jet, \gamma) > 0.3$
Neutrino	$p_{\rm T}^{\nu\bar{\nu}} > 130 {\rm GeV}$

MEPhI@Atlas meeting 12.04.2024

OMC method

Overlay Monte-Carlo (OMC) Method

Strategy:

1. To estimate the number of pile-up events (referred to as A+B) in the diboson production (referred to as AB) the overlay Monte-Carlo (OMC) method uses separate A and B samples at the particle-level.

2. The overlay of B over A is performed by adding objects (photons, jets, etc.) from B into A;

 The variables that define the AB final state are calculated in order to form a valid combined A+B event (referred to as OMC event). These variables are used to be checked against analysis selections;

4. The weight of the combined A+B event is determined as:

5. The number of A+B events at the particle-level is defined as the sum of OMC sample weights:

$$N_{\rm A+B}^{\rm gen} = \sum w_{\rm A+B}$$

 $w_{\rm A+B} = \frac{w_{\rm A}w_{\rm B}}{\langle w_{\rm A} \rangle \langle w_{\rm B} \rangle} \frac{L\sigma_{\rm A+B}}{N_{\rm OMC}}$

6. The predicted number of pile-up events at the detector-level in the SR is estimated as follows:

$$N_{\rm A+B}^{\rm rec} = N_{\rm A+B}^{\rm gen} C$$

*Correction factor (C) is defined as the reconstructed MC signal AB events passing all selections divided by the number of MC signal AB events at the particle-level within the fiducial region.

MEPhI@Atlas meeting 12.04.2024

OMC method

- The Z boson (taken as A) and the photon (taken as B) components of Z+γ OMC events are taken from Zj and γ+j MC samples, respectively;
- The particle-level photon from γ+j process is being overlayed over random particle-level Z boson from Zj process until it becomes a part of Z+γ OMC event, that passes the fiducial region requirements;
- The procedure for such a combination of events is performed for every γ+j sample with a certain Zj sample in each of the MC simulation campaigns (MC16a, MC16d, MC16e);
- Iterating through all γ+j events requires significant computing resources, therefore only 100k events of every statistically large γ+j sample are used to form OMC sample;
- The total number of pile-up events at the particle-level is obtained by combining each γ+j sample sequentially with each Zj sample.

Definition of the fiducial region:

Category	Cut
Photons	Isolated, $E_{\mathrm{T}}^{\gamma} > 150 \text{ GeV}$
	$ \eta < 2.37$ excl. $1.37 < \eta < 1.52$
Jets	$ \eta < 4.5$
	$p_T > 50 { m GeV}$
	$\Delta R(jet,\gamma) > 0.3$
Lepton	$N_l=0$
Neutrino	$p_{ m T}^{ uar{ u}}>130{ m GeV}$
Events	Significance $E_{\rm T}^{\rm miss} > 11$
	$ \Delta \phi(ec{p}_{ m T}^{ m miss},\gamma) >0.6$
	$ \Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}}, j_1) > 0.3$

The weight and the cross section of <u>the combined Z+γ event</u>:

OMC method

 The C-factor is parameterized by the transverse momentum of the photon, since the total number of pile-up events at the particle-level is summed from the number of pile-up events calculated for each γ+j sample.

The final estimate* of background events due to multiple pp collisions: N^{SR}_{Z+γ} = 2.938 ± 0.018(stat.) events; *(more in back-up)

The statistical uncertainties come from:

- The uncertainty of the weights w_{γ} and w_{γ} of events used in the combination of γ +j samples with Zj samples;
- The uncertainty of C-factor;
- The uncertainty of SF-factors;

The fraction of pile-up events in relation to the data obtained using the OMC method is (0.01257 ± 0.00011) %.

MEPhI@Atlas meeting 12.04.2024