Inclusive $Z(v \bar{v}) \gamma$ full Run2 analysis report

Questions

1) What is the signal significance for MC16a, d and e ?

2) Should the third source of systematic (difference between "real fake rate" in Z(ee) MC and tag-and-probe method) be considered for the data-driven background estimation of $e \rightarrow \gamma$?

Answer: This systematic can be disregarded because it is a deviation in MC, meaning this systematic is not mandatory. However, taking it into account makes the estimation more conservative.

\square	Process	MC16a	MC16d	MC16e	Run2	Run2 (before opt.)
	Signal					
	$\mathrm{Z}(\nu \nu) \gamma \mathrm{QCD}$	2915 ± 4	3345 ± 5	4452 ± 5	10711 ± 8	13438 ± 9
	Z $(\nu \nu) \gamma$ EWK	45.57 ± 16	51.80 ± 0.19	68.9 ± 0.2	166.3 ± 0.3	300.5 ± 0.4
	Total signal	2961 ± 4	3396 ± 5	4521 ± 5	10878 ± 8	13738 ± 9
is	Background					
	W γ QCD	884 ± 11	1026 ± 13	1400 ± 13	3310 ± 21	6393 ± 28
	W γ EWK	29.5 ± 0.3	34.1 ± 0.4	45.8 ± 0.4	109.4 ± 0.6	293.5 ± 1.1
	tt, top	58 ± 3	62 ± 4	81 ± 4	177 ± 5	1991 ± 18
	$\mathrm{W}(\mathrm{e} \nu)$	788 ± 221	1322 ± 303	1480 ± 310	3591 ± 487	7934 ± 540
	$\mathrm{tt} \gamma$	48.3 ± 1.4	55.3 ± 1.7	74.6 ± 1.8	178 ± 3	746 ± 6
	$\gamma+\mathrm{j}$	1829 ± 35	2746 ± 53	3549 ± 51	8123 ± 82	63766 ± 211
	Zj	134 ± 11	115 ± 12	165 ± 13	415 ± 21	635 ± 25
	Z(ll) γ	56 ± 2	64 ± 2	92 ± 2	211 ± 4	399 ± 5
	$\mathrm{W}(\tau \nu)$	147 ± 20	191 ± 46	302 ± 48	640 ± 69	2222 ± 127
	Total bkg.	3973 ± 225	5616 ± 312	7190 ± 318	16779 ± 499	84380 ± 595
	Stat. signif.	35.6 ± 0.6	35.8 ± 0.6	41.8 ± 0.6	65.4 ± 0.6	43.86 ± 0.14

3) To show the estimates of fake rates from MC and data ($e \rightarrow \gamma$ estimation)

fake rate	$150<E_{T}^{\gamma}<250 \mathrm{GeV}$	$E_{T}^{\gamma}>250 \mathrm{GeV}$	$1.52<\|\eta\|<2.37$
$Z(e e)$ MC tag-n-probe	$0<\|\eta\|<1.37$	$0<\|\eta\|<1.37$	
$Z(e e)$ MC mass window variation	0.0218 ± 0.0004	0.0197 ± 0.0005	0.0762 ± 0.0012
$Z(e e)$ MC "real"	0.022 ± 0.0004	0.0198 ± 0.0005	0.0765 ± 0.0012
		0.023 ± 0.002	0.084 ± 0.004

	$150<E_{T}{ }^{\vee}<250 \mathrm{GeV}$	$E_{T}{ }^{\vee}>250 \mathrm{GeV}$
$0<\|\eta\|<1.37$	$0.0234 \pm 0.0006 \pm 0.0010$	$0.0193 \pm 0.0013 \pm 0.0038$
$1.52<\|\eta\|<2.37$	$0.0714 \pm 0.0019 \pm 0.0074$	

4) To show the difference between "real fake rate" in Z(ee) MC and tag-and-probe method (3rd question)

Questions

5) Anomaly on the Mee plot in the region $<50 \mathrm{GeV}$

Distribution on the invariant mass of the DrellYan production ee production in the modelling.

Preliminary answer: This may be related to the distribution on the invariant mass of the Drell-Yan ee production. This shape is caused by the combination of reconstruction and identification efficiencies overlapped with the kinematic distribution on electron pT .

Motivation

- Standard Model:
\Rightarrow A higher branching ratio of the neutral decay channel in comparison to the charged lepton decays of Z boson and better background control in comparison with the hadronic channel.
$\Rightarrow \quad$ Previous study of this channel $-36.1 \mathrm{fb}^{-1}$ data. Full Run2 statistics ($140 \mathrm{fb}^{-1}$) \rightarrow increase of measurement accuracy (expect the experimental sensitivity to increase by a factor of 2).
- Goal:
\Rightarrow To obtain integrated and differential cross-sections for 10 observables: $E_{T}{ }^{\gamma}, p_{T}{ }^{\text {miss }}, N_{j e t s}, \eta_{\gamma}, \Delta \varphi\left(\gamma, p_{T}{ }^{\text {miss }}\right), \Delta \varphi\left(j_{1}, j_{2}\right), \Delta R(Z, \gamma), p_{T}{ }^{1}, p_{T^{2}}{ }^{2}, m_{T}^{Z \gamma}$ and compare the results with the theory predictions including NNLO QCD and NLO EWK corrections.

Glance: ANA-STDM-2018-54

- Beyond SM:
\Rightarrow To obtain the strongest up-to-date limits on anomalous neutral triple gauge-boson couplings (aTGCs) using vertex functions and EFT formalisms.
\Rightarrow Possible combination of the EFT limits between $Z \gamma$ and $Z Z$.

Selection optimisation

- Topology: high-energetic photon and MET.
- Multivariate (MV) method of the selection optimization takes into account the signal significance S as a function of the threshold values of the variables:

$$
S=N_{\text {signal }} / \sqrt{N_{\text {signal }}+N_{\mathrm{bkg}}}
$$

\Rightarrow The result of the MV optimization process is a set of threshold values for the variables that yield the maximum S .

Selections	Cut Value	
$E_{\mathrm{T}}^{\text {miss }}$	$>130 \mathrm{GeV}$	
E_{T}^{γ}	$>150 \mathrm{GeV}$	
Number of tight isolated photons	$N_{\gamma}=1$	
Lepton veto	$N_{\mathrm{e}}=0, N_{\mu}=0$	The
τ veto	$N_{\tau}=0$	significance
$E_{\mathrm{T}}^{\text {miss }}$ significance	>11	iscreased
$\left\|\Delta \phi\left(\gamma, \vec{p}_{\mathrm{T}}^{\text {miss }}\right)\right\|$	>0.6	by 3\%
$\left\|\Delta \phi\left(j_{1}, \vec{p}_{\mathrm{T}}^{\text {miss }}\right)\right\|$	>0.3	

Beam-induced background suppression: $|\Delta z|<250 \mathrm{~mm}$
The optimisation procedure is done for three different photon isolation working points FixedCutTight, FixedCutTightCaloOnly and FixedCutLoose.

	all cuts	presel. only
Signal		
$\mathrm{Z}(v v) \gamma \mathrm{QCD}$	10711 ± 8	13438 ± 9
$\mathrm{Z}(v v) \gamma \mathrm{EWK}$	166.3 ± 0.3	300.5 ± 0.4
Total signal	10878 ± 8	13738 ± 9
Background		
$\mathrm{W} \gamma$ QCD	3310 ± 21	6393 ± 28
$\mathrm{~W} \gamma$ EWK	109.4 ± 0.6	293.5 ± 1.1
tt, top	177 ± 5	1991 ± 18
$\mathrm{~W}(\mathrm{e} v)$	3591 ± 487	7934 ± 540
$\mathrm{tt} \gamma$	178 ± 3	746 ± 6
$\gamma+\mathrm{j}$	8123 ± 82	63766 ± 211
Zj	415 ± 21	635 ± 25
$\mathrm{Z}(\mathrm{ll}) \gamma$	211 ± 4	399 ± 5
$\mathrm{~W}(\tau v)$	640 ± 69	2222 ± 127
Total bkg.	16779 ± 499	84380 ± 595
Stat. signif.	65.4 ± 0.6	43.86 ± 0.14

Background composition

Percentage of the data

Background composition for $Z(v \bar{v}) \gamma$:
$35 \% \quad-\quad Y+$ jets - fit to data in additional CR based on MET significance (shape from MC);
$15 \% \quad-\quad W(\rightarrow l v) Y$ and $t t y-$ fit to data in additional CR based on N leptons (shape from MC);
11\% • e \rightarrow Y - fake-rate estimation using Z-peak (tag-n-probe) method;
8\% - jet $\rightarrow Y-A B C D$ method based on photon ID and isolation (shape from Slice Method);
0.9% - $Z\left(l^{+}{ }^{-}\right) \mathrm{y}-\mathrm{via} M C ;$

$e \rightarrow \gamma$ misID background: Z-peak method

- Background estimation method:

1. Estimating $\mathrm{e} \rightarrow \mathrm{\gamma}$ fake-rate as rate $_{e \rightarrow \gamma}=\frac{\left(N_{e \gamma}-N_{b k g}\right)}{\left(N_{e e}-N_{b k g}\right)}$,
where $N_{\text {ey }}, N_{\text {ee }}$ - number of ee and ey events in Z-peak mass window ($\mathrm{M}_{\mathrm{z}}-10 \mathrm{GeV}, \mathrm{M}_{\mathrm{z}}+10 \mathrm{GeV}$), $\mathrm{N}^{\mathrm{bkg}}$ - background in Z-peak mass window extrapolated from sideband with exponential poll or pol2 fit.

Additional W_{Y} background rejection: $E_{T}{ }^{\text {miss }}<40 \mathrm{GeV}$.
eү pair selection:

signal region photon with $\mathrm{p}_{\mathrm{T}}>150 \mathrm{GeV}$ (probe), selected Tight electron with $\mathrm{p}_{\mathrm{T}}>25 \mathrm{GeV}$ (tag)
ee pair selection:
selected electron with $p_{T}>150 \mathrm{GeV}$ (probe), selected opposite sign Tight electron with $\mathrm{p}_{\mathrm{T}}>25 \mathrm{GeV}$ (tag)
Since fake rate depends on p_{T} and $\mathrm{\eta}$ (see backup), three regions are considered:
$\mid \eta /<1.37, p_{T}<250 \mathrm{GeV}$ and $/ \eta /<1.37, p_{T}>250 \mathrm{GeV}$ and $1.52</ \eta /<2.37$ (flat distribution on p_{T})
2. Building e-probe control region (CR): signal region with selected Tight electron with $\mathrm{p}_{\mathrm{T}}>150 \mathrm{GeV}$ instead of photon.
3. Scaling data distributions from e-probe CR by fake rate value.

$e \rightarrow \gamma$ misID background: systematics

- Systematics on fake-rate estimation (ascending contribution):
$\Rightarrow \quad \mathrm{Z}$ peak mass window variation (varies from 0.3% to 0.7%).
\Rightarrow Background under Z peak evaluation (varies from 3% to 14%).
\Rightarrow Difference between "real fake rate" in Z(ee) MC and tag-andprobe method performed on Z(ee) MC (varies from from 3\% to 15%).

	$150<E_{T}{ }^{\vee}<250 \mathrm{GeV}$	$E_{T}{ }^{\vee}>250 \mathrm{GeV}$
$0<\|\eta\|<1.37$	$0.0234 \pm 0.0006 \pm 0.0010$	$0.0193 \pm 0.0013 \pm 0.0038$
$1.52<\|\eta\|<2.37$	$0.0714 \pm 0.0019 \pm 0.0074$	

First uncertainty is statistical, second is systematical.
Total systematics on fake-rate does not exceed 20\%

Background estimation result:
Signal region $2608 \pm 11 \pm 162$
Total syst. on the background yield: 6\%

jet $\rightarrow \gamma$ misID background: ABCD-method

- A pair of photons from the decay of neutral mesons (typically a π^{0}), contained in hadronic jets, can give a signature of EM shower similar to a single isolated photon signature of the electromagnetic (EM) shower.
- Background is estimated from data using 2D-sideband method: photon isolation and identification variables are used to construct the sidebands.
- Correlation is measured in data and MC by $R=\frac{N_{\mathrm{A}} N_{\mathrm{D}}}{N_{\mathrm{B}} N_{\mathrm{C}}}$
- FixedCutLoose isolation working point is used with iso gap of 2 GeV

$$
\text { In } A B C D
$$

Cut, GeV				
loose'2				
loose'3				
MC loose'4				
4.5	1.18 ± 0.19	1.15 ± 0.16	1.08 ± 0.13	1.11 ± 0.13
7.5	1.12 ± 0.14	1.16 ± 0.13	1.10 ± 0.11	1.11 ± 0.11
10.5	1.15 ± 0.14	1.16 ± 0.13	1.11 ± 0.11	1.12 ± 0.11
Data-driven				
4.5	0.99 ± 0.11	1.05 ± 0.11	1.07 ± 0.09	1.09 ± 0.09
7.5	1.13 ± 0.11	1.09 ± 0.09	1.06 ± 0.08	1.05 ± 0.08
10.5	1.00 ± 0.10	0.99 ± 0.09	0.96 ± 0.07	0.96 ± 0.07

	R_{data}	R^{\prime}	R
loose'2	0.99 ± 0.11	1.18 ± 0.19	1.1 ± 0.2
loose'3	1.05 ± 0.11	1.15 ± 0.16	1.1 ± 0.2
loose'4	1.07 ± 0.09	1.08 ± 0.13	1.1 ± 0.2
loose'5	1.09 ± 0.09	1.11 ± 0.13	1.4 ± 0.3

Resulting R for MC and data

R factor	loose'2	loose'3	loose'4	loose'5
MC	0.99 ± 0.15	1.05 ± 0.11	1.07 ± 0.10	1.1 ± 0.3

In B-E, E, D-F and F

jet $\rightarrow \gamma$ misID background: uncertainties

- Statistical uncertainty:
\Rightarrow The event yields of four regions in data and non jet $\rightarrow \gamma$ background are varied by $\pm 1 \sigma$ independently (9%).
\Rightarrow The statistical uncertainty on the signal leakage parameters is negligible. Total statistics: 9\%.
- Systematic uncertainty :
\Rightarrow Anti-tight definition and isolation gap choice - variations of $A B C D$ regions determination by $\pm 1 \sigma$ changes in data yield (14%).
\Rightarrow The deviations from the nominal value from varying R factor by ± 0.10 (10%).

Central value	1765_{-160}^{+164}
Loose'2	+240
Loose'4	+85
Loose'5	-55
Isolation gap +0.3 GeV	-60
Isolation gap -0.3 GeV	+33

\Rightarrow Uncertainty coming from the signal leakage parameters is obtained via

Central value	1765_{-160}^{+164}
$R+\Delta R$	+180
$R-\Delta R$	-178

| Signal leakage parameters | MadGraph+Pythia8, Sherpa | 2.2 | MadGraph+Pythia8, MadGraph+Pythia8 |
| :--- | :---: | :---: | :---: | Relative deviation

\Rightarrow The iso/ID uncertainty on reconstruction photon efficiency $\delta_{\text {eff }}$ iso/ID (1.3\%). Total systematics: 17\%.
Total number of jet $\rightarrow \gamma$ events: $1770 \pm 160 \pm 300 . Z(v v)+j e t s$ and multi-jet MC predicts 2000 ± 1300 events.

jet $\rightarrow \gamma$ misID background: slice method

- The jet $\rightarrow \gamma$ background shape cannot be properly modeled with MC. For this reason, the shape of jet $\rightarrow \gamma$ background is estimated via slice method.
- The proposed slice method splits the phase space into four orthogonal regions based on kinematic cuts and the photon isolation.
- The non-isolated regions are split into a set of successive intervals (slices) based on the photon isolation.
\Rightarrow Four isolation slices are chosen: $[0.065,0.090,0.115,0.140,0.165]$.

$$
\begin{gathered}
N_{\mathrm{CR} 1(\mathrm{i})}^{j e t \rightarrow \gamma}=N_{\mathrm{CR} 1(\mathrm{i})}^{\mathrm{data}}-N_{\mathrm{CR} 1(\mathrm{i})}^{\mathrm{Z}(v \bar{v}) \gamma}-N_{\mathrm{CR} 1(\mathrm{i})}^{\mathrm{bkg}} \\
H_{j e t \rightarrow \gamma}^{[0 . A, 0 . B]}=H_{\mathrm{data}}^{[0 . A, 0 . B]}[X]-H_{\mathrm{sig}}^{[0 . A, 0 . B]}[X]-H_{\mathrm{bkg}}^{[0 . A, 0 . B]}[X]
\end{gathered}
$$

$$
\Delta^{C R 2}[X]=\frac{1}{2}\left(\frac{H_{j e t \rightarrow \gamma}^{[0.065,0.09]}[X]-H_{j e t \rightarrow \gamma}^{[0.115,0.14]}[X]}{2}+\frac{H_{j e t \rightarrow \gamma}^{[0.09,0.115]}[X]-H_{j e t \rightarrow \gamma}^{[0.14,0.165]}[X]}{2}\right)
$$

Kinematic selections

The jet $\rightarrow \mathrm{\gamma}$ shape in the $\mathrm{SR}: \quad H_{j e t \rightarrow \gamma}^{S R}=H_{j e t \rightarrow \gamma}^{[0.065,0.09]}[X]+\Delta^{C R 2}[X]$
The correction term

Template fit

- Three free parameters are introduced in the combined fit: a signal strength parameter $\mu(\mathrm{Zg})$ and two normalization factors $\mu(\mathrm{Wg})$ and $\mu(\gamma j)$ used to scale the yields of $W(\mathrm{lv}) \gamma$ and tty and $\gamma+j e t s$ processes.
\Rightarrow The binned likelihood function used in the analysis is:

Results of background only fit:

$$
\begin{gathered}
\mu(\mathrm{Wg})=0.93 \pm 0.13 \\
\mu(\mathrm{\gamma j})=0.74 \pm 0.12
\end{gathered}
$$

Template fit

- Using the Asimov data: $\mu_{Z y}=1.00 \pm 0.08, \mu_{W \gamma}=0.93 \pm 0.12$ and $\mu_{\mathrm{yj}}=0.74 \pm 0.10$. Expected signal significance 69σ.
- Fit in the SR and CRs:

$\Rightarrow \mu_{z \gamma}=0.70 \pm 0.06, \mu_{W_{\gamma}}=0.92 \pm 0.06$ and $\mu_{\mathrm{yj}}=0.88 \pm 0.08$. Observed signal significance 50σ.

Template fit

Background only + max. symm.
Asimov
Observed

ATLAS Internal
and

Unfolding and differential measurement

The goal of unfolding is to take the measured observable and translate it into the true observable.
\Rightarrow The response matrix R relates true vector x and observed vector $\mathrm{y}: \quad \hat{R} \mathbf{x}=\mathbf{y}$
\Rightarrow The response matrix is defined as: $\quad R_{i j}=\frac{1}{\alpha_{i}} \varepsilon_{j} M_{i j} \quad$ Migration matrix: $M_{i j}=\frac{N_{i j}^{\text {det. } \cap \mathrm{fid} .}}{N_{j}^{\text {det. }} \cap \text { fid. }}$
\Rightarrow The unfolding procedure is performed according to the maximum likelihood method via TRExFitter.
\Rightarrow The differential cross-section is defined by equation: $\quad \frac{\sigma_{j}}{\Delta x_{j}}=\frac{N_{j}^{\text {unfold }}}{\left(\int \mathcal{L} d t\right) \cdot \Delta x_{j}}$

aTGC: introduction

- $\quad Z(v v) y$ production is very sensitive to the neutral triple gauge couplings (aTGCs). aTGCs are zero in the SM at the tree level.
- Two ways to describe aTGCs: effective field theory and vertex function approach.

Both formalisms were improved by theorists and

BSM new terms in both formalisms appear.
\Rightarrow State-of-the-art UFO models are needed to generate the events. For both formalisms models with new terms were created.
EFT: model NTGC_all, JIRA ticket. VF: model NTGC_VF, JIRA ticket.

EFT: 6 Wilson coefficients $\left(C_{G+} / \Lambda^{4}, C_{G-} / \Lambda^{4}, C_{\sim B W} / \Lambda^{4}, C_{B W} / \Lambda^{4}, C_{B B} / \Lambda^{4}, C_{W W} / \Lambda^{4}\right)$.
VF: 12 parameters ($\left.h_{i}{ }^{\mathrm{V}} ; \mathrm{i}=1 . .6 ; \mathrm{V}=\mathrm{Z}, \mathrm{y}\right)$. Only $\mathrm{i}=3 . .5$ are planned to be constrained.

aTGC: current results

- Plan is to search for CP-conserving effects only. Search for CP-violating effects requires identification of the decay products.
- EFT samples were prepared, VF samples request in progress.
- Strategy: reco-level fit of the $E_{T}{ }^{\gamma}$ distribution. Preliminary results:

Coefficient	Expected limits $\left[\mathrm{TeV}^{-4}\right]$
C_{G+} / Λ^{4}	$[-0.0065 ; 0.0047]$
C_{G-} / Λ^{4}	$[-0.30 ; 0.34]$
$C_{\tilde{B} W} / \Lambda^{4}$	$[-0.35 ; 0.34]$
$C_{B W} / \Lambda^{4}$	$[-0.63 ; 0.63]$
$C_{B B} / \Lambda^{4}$	$[-0.25 ; 0.25]$
$C_{W W} / \Lambda^{4}$	$[-1.3 ; 1.3]$

Summary

- All steps of inclusive $Z(v \bar{v}) \gamma$ Run2 analysis are already done: selection optimisation, datadriven estimation of $e \rightarrow \gamma$ and jet $\rightarrow \gamma$, fit procedure, control plots, unfolding, differential cross-sections.

Plans:

$\Rightarrow \quad$ To solve problems systematics.
\Rightarrow To update and to obtain other observables differential cross-section plots.
\Rightarrow To continue work on limits on aTGCs.
\Rightarrow Almost all chapters of the internal note are ready, but need update.
$\Rightarrow \quad E B$ request ASAP.

Thank you for your attention!

BACK-UP

Control plots

Control plots

Control plots

Control plots

Control plots

Template fit

- Three free parameters are introduced in the combined fit: a signal strength parameter $\mu(\mathrm{Zg})$ and two normalization factors $\mu(\mathrm{Wg})$ and $\mu(\gamma j)$ used to scale the yields of $W(\mathrm{lv}) \gamma$ and tty and $\gamma+j e t s$ processes.
\Rightarrow The binned likelihood function used in the analysis is:

Results of background only fit:

$$
\begin{gathered}
\mu(\mathrm{Wg})=1.00 \pm 0.06 \\
\mu(\mathrm{\gamma j})=0.70 \pm 0.07
\end{gathered}
$$

Template fit

- Using the Asimov data: $\mu_{Z y}=1.00 \pm 0.07, \mu_{W \gamma}=1.00 \pm 0.18$ and $\mu_{\gamma j}=0.70 \pm 0.06$. Expected signal significance 69σ.
- Fit in the SR and CRs:

$\Rightarrow \mu_{\mathrm{Zy}}=0.90 \pm 0.13, \mu_{\mathrm{W}_{\mathrm{\gamma}}}=0.97 \pm 0.06$ and $\mu_{\mathrm{yj}}=0.84 \pm 0.05$. Observed signal significance 64σ.
There are some problems with jet systematics!

Problems with template fit

ATLAS Internal

Fit in all CRs w/o gj sample (syst):
ATLAS Internal

Fit in all CRs with gj sample with cut on pT soft term:

Problems with template fit: categorisation

- There was an attempt to categorise the events based on $N_{\text {jets }}$ in the gj CR (background only fit)

$\Rightarrow \mu_{W_{\gamma}}=1.06 \pm 0.04, \mu_{\gamma j(0)}=0.78 \pm 0.09, \mu_{\mathrm{\gamma j}(1)}=0.72 \pm 0.09$ and $\mu_{\mathrm{\gamma j}(2)}=0.73 \pm 0.14$.
more information in back-up

Wץ QCD scale: decorrelation

ATLAS Internal

WY CR causes the shift
The central value is ~ 0.5 with all systematics adding \rightarrow no problem?

Zy QCD scale: decorrelation

Not clear what's going wrong

Fit procedure

Fit in all CRs with gj sample

ATLAS Internal

Fit in all CRs w/o gj sample
ATLAS Internal

JET_Pileup_RhoTopology JET Pileup OffsetNPV JET_Pileup_OffsetMu JET_JER_EffectiveNP_7restTerm JET_JER_EffectiveNP_6 JET_JER_EffectiveNP_5 JET_JER EffectiveNP 4 JET-JER EffectiveNP 3 JET_JER_EffectiveNP_2 JET JER EffectiveNP ${ }^{-1}$ JET_JER_EffectiveNP_-1
JET_JER_DataVsMC_M JET_Flavor_Response
JET_Flavor_Composition JET_Flavor_Composition
EL ĒFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR EL EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR EL_EFF_ID_TOTAL 1NPCOR PLUS UNCOR EG SCALE ALI EG_RESOLUTION_ALL

Fit procedure

Fit in all CRs with gj sample with cut on MET signif < 9 in gj CR

ATLAS Internal

Fit in all CRs with gj sample with cut on pT soft term

ATLAS Internal

JET_SingleParticle_HighPt JET_PunchThrough_MC16 JET_Pileup_RhoTopology JET_Pileup_PtTerm JET_Pileup_OffsetNPV JET_Pileup_OffsetMu JET_JER_EffectiveNP_7restTerm JET_JER_EffectiveNP_6 JET_JER_EffectiveNP JET_JER_EffectiveNP JET_JER_EffectiveNP JET_JER_EffectiveNP JET_JER_EffectiveNP 1 JET_JER_DataVsMC_MC16 JET_Flavor_Response JET_Flavor_Composition JET_Etalntercalibration_Modelling JET_EffectiveNP_Statistical6 JET_EffectiveNP ${ }^{-}$Statistical5 JET_EffectiveNP ${ }^{-}$Statistical4 JET_EffectiveNP_Statistical3 JET_EffectiveNP_Statistical2 JET EffectiveNP Statistical1 JET EffectiveNP Mixed3 JET EffectiveNP ${ }^{-}$Mixed JET_EffectiveNP_Mixed1 JET_EffectiveNP_Detector2 JET_EffectiveNP_Detector1 EG_SCALE ALL EG_RESOLUTION_ALL

Fit procedure

Reproc 21-02-23 with softterm

Reproc 03-11-23 w/o softterm

Fit procedure

Fit procedure

ATLAS Internal

Problems with template fit: categorisation

- There was an attempt to categorise the events based on $N_{\text {jets }}$ in the gj CR (background only fit)

$\Rightarrow \mu_{W_{\gamma}}=1.06 \pm 0.04, \mu_{\mathrm{vj}(0)}=0.78 \pm 0.09, \mu_{\mathrm{vj}(1)}=0.72 \pm 0.09$ and $\mu_{\mathrm{vj}(2)}=0.73 \pm 0.14$.

Beam-induced background (BIB)

- Muons from pion and kaon decays in hadronic showers, induced by beam losses in non-elastic collisions with gas and detector material, deposit large amount of energy in calorimeters through radiative processes (= fake jets).
- The characteristic peaks of the fake jets due to BIB concentrate at $\pm \pi$ and 0 (mainly due to the bending in the horizontal plane that occurs in the D1 and D2 dipoles and the LHC arc).

Cuts: $|\phi|<0.2,|\phi| \in[2.8 ; 3.2]$ and $|n|>1.6$

Rejection efficiency: (100 ± 2)\%
Acceptance efficiency: (99.6 $\pm 0.9) \%$

Selection optimisation

Variable	1	2	3	4
$E_{T}^{\text {miss }}$ signif.	> 11			-
$\Delta \phi\left(E_{T}^{\text {miss }}, \gamma\right)$	>0.6			-
$\Delta \phi\left(E_{T}^{\text {miss }}, j_{1}\right)$	>0.3			-
$E_{T}^{\text {miss }}, \mathrm{GeV}$	>130			-
Signal				
$\mathrm{Z}(v v) \gamma \mathrm{QCD}$	9928 ± 8	10021 ± 8	10711 ± 8	13934 ± 9
$\mathrm{Z}(v v) \gamma$ EWK	151.6 ± 0.3	153.6 ± 0.3	166.3 ± 0.3	312.3 ± 0.4
Total signal	10080 ± 8	10175 ± 8	10878 ± 8	14247 ± 9
Background				
W γ QCD	3022 ± 20	3061 ± 20	3310 ± 21	6795 ± 29
W γ EWK	99.9 ± 0.6	101.3 ± 0.6	109.4 ± 0.6	309.8 ± 1.1
tt , top	156 ± 5	176 ± 5	201 ± 6	2800 ± 22
$\mathrm{W}(\mathrm{e} v$)	3091 ± 453	3409 ± 521	3591 ± 487	8540 ± 663
$\mathrm{tt} \gamma$	161 ± 3	163 ± 3	178 ± 3	787 ± 6
$\gamma+\mathrm{j}$	7642 ± 79	7757 ± 80	8123 ± 82	67517 ± 217
Zj	221 ± 16	328 ± 20	415 ± 21	2583 ± 50
$\mathrm{Z}(\mathrm{ll}) \gamma$	197 ± 4	200 ± 4	211 ± 4	426 ± 5
$\mathrm{W}(\tau v)$	412 ± 65	575 ± 72	640 ± 69	4615 ± 138
Total bkg.	15002 ± 465	15770 ± 533	16779 ± 499	94373 ± 714
Stat. signif.	63.6 ± 0.6	63.2 ± 0.6	65.4 ± 0.6	43.23 ± 0.14

Table 33: The results of selection optimisation at three different working points FixedCutTight, FixedCutTightCaloOnly, FixedCutLoose.

Selection optimisation

| | $E_{T}^{\text {miss }}$ signif. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $E_{T}^{\text {miss }}, \mathrm{GeV}$ | |
| | $\Delta \phi\left(E_{T}^{\text {miss }}, \gamma\right)$ |
| | $\Delta \phi\left(E_{T}^{\text {miss }}, j_{1}\right)$ |

$\mathrm{Z}(v v) \gamma \mathrm{QCD}$	10711 ± 8	12307 ± 9	10819 ± 8	10728 ± 8	10849 ± 8
$\mathrm{Z}(v v) \gamma \mathrm{EWK}$	166.3 ± 0.3	251.5 ± 0.4	167.6 ± 0.3	168.3 ± 0.3	171.0 ± 0.3
Total signal	10878 ± 8	12559 ± 9	10987 ± 8	10897 ± 8	11020 ± 8

Background

$\mathrm{W} \gamma$ QCD	3310 ± 21	4741 ± 24	3385 ± 21	3389 ± 21	3440 ± 22
$\mathrm{~W} \gamma$ EWK	109.4 ± 0.6	210.4 ± 0.9	111.2 ± 0.6	112.8 ± 0.7	115.3 ± 0.7
tt top	177 ± 5	631 ± 10	204 ± 6	267 ± 7	209 ± 6
$\mathrm{~W}(\mathrm{e} v)$	3591 ± 487	4372 ± 517	3827 ± 506	3883 ± 487	3627 ± 487
$\mathrm{tt} \gamma$	178 ± 3	508 ± 5	179 ± 3	183 ± 3	192 ± 3
$\gamma+\mathrm{j}$	8123 ± 82	24991 ± 139	8552 ± 84	8156 ± 82	9668 ± 86
Zj	415 ± 21	546 ± 24	419 ± 21	417 ± 21	428 ± 21
$\mathrm{Z}(\mathrm{ll}) \gamma$	211 ± 4	284 ± 4	216 ± 4	212 ± 4	231 ± 4
$\mathrm{~W}(\tau v)$	640 ± 69	945 ± 100	651 ± 69	821 ± 70	655 ± 69
Total bkg.	16779 ± 499	37229 ± 546	17544 ± 518	17440 ± 499	18566 ± 500
Stat. signif.	65.4 ± 0.6	56.3 ± 0.3	65.0 ± 0.6	64.7 ± 0.6	64.1 ± 0.5

Table 34: Comparison of statistical significance and event returns when each of the optimised variables is excluded.
The excluded variable is highlighted in red.

$\mathrm{e} \rightarrow \gamma$ misID background: Z-peak method

Selections	Cut Value
$E_{\mathrm{T}}^{\text {miss }}$	$>130 \mathrm{GeV}$
$E_{\mathrm{T}}^{e-p r o b e}$	$>150 \mathrm{GeV}$
Number of loose non-isolated photons	$N_{\gamma}=0$
Number of tight probe electrons	$N_{e-p r o b e}=1$
Lepton veto	$N_{\mu}+N_{\tau}=0$
$E_{\mathrm{T}}^{\text {miss }}$ significance	>11
$\mid \Delta \phi\left(e-\right.$ probe $\left.^{2} \vec{p}_{\mathrm{T}}^{\text {miss }}\right) \mid$	>0.6
$\left\|\Delta \phi\left(j_{1}, \vec{p}_{\mathrm{T}}^{\text {miss }}\right)\right\|$	>0.3

Table 5: Event selection criteria for e-probe CR events.

Event yield real $e+E_{\mathrm{T}}^{\text {miss }}(\mathrm{MC})$	fake $e+E_{\mathrm{T}}^{\text {miss }}(\mathrm{MC})$	data	
e-probe CR	78079 ± 4078	465 ± 34	74076

Table 6: Event yields for real $e+E_{\mathrm{T}}^{\text {miss }}$ and fake $e+E_{\mathrm{T}}^{\text {miss }}$ prediction and observed data in probe-electron control regions. Indicated uncertainties are statistical.

$e \rightarrow \gamma$ misID background: Z-peak method

fake rate	$150<E_{T}^{\gamma}<250 \mathrm{GeV}$	$E_{T}^{\gamma}>250 \mathrm{GeV}$	$1.52<\|\eta\|<2.37$	Total
	$0<\|\eta\|<1.37$	$0<\|\eta\|<1.37$		
syst. on fake-rate estimation.	4%	20%	10%	
syst. from stat. unc. on fake-rate	3%	7%	3%	
syst. from impurity of CR	0.16%	0.16%	0.16%	
Total rel. syst.	5%	21%	10%	
Event yield in (incl.) e-probe CR	49673	11492	20855	
Fake-rate	0.0234	0.0193	0.0714	
$e \rightarrow \gamma$ event yield in SR	1062	200	1345	2608
Total abs. syst.	58	42	134	162

Table 35: Systematics breakdown for $e \rightarrow \gamma$ background for SR.

Missing transverse momentum is calculated as the sum of the following terms:

$$
E_{\mathrm{x}(\mathrm{y})}^{\mathrm{miss}}=E_{\mathrm{x}(\mathrm{y})}^{\mathrm{miss}, \mathrm{e}}+E_{\mathrm{x}(\mathrm{y})}^{\mathrm{miss}, \mu}+E_{\mathrm{x}(\mathrm{y})}^{\mathrm{miss}, \tau_{\text {had }}}+E_{\mathrm{x}(\mathrm{y})}^{\mathrm{miss}, \gamma}+E_{\mathrm{x}(\mathrm{y})}^{\mathrm{miss}, \mathrm{jets}}+E_{\mathrm{x}(\mathrm{y})}^{\mathrm{miss}, \text { SoftTerm }}
$$

$e \rightarrow \gamma$ misID background: Z-peak method

fake rate	$150<E_{T}^{\gamma}<250 \mathrm{GeV}$	$E_{T}^{\gamma}>250 \mathrm{GeV}$	$1.52<\|\eta\|<2.37$
	$0<\|\eta\|<1.37$	$0<\|\eta\|<1.37$	
$Z(e e)$ MC tag-n-probe	0.0218 ± 0.0004	0.0197 ± 0.0005	0.0762 ± 0.0012
$Z(e e)$ MC mass window variation	0.0217 ± 0.0004	0.0198 ± 0.0005	0.0765 ± 0.0012
$Z(e e)$ MC "real"	0.022 ± 0.002	0.023 ± 0.002	0.084 ± 0.004

Table 33: Electron-to-photon fake rates estimated in MC.

fake rate	$150<E_{T}^{\gamma}<250 \mathrm{GeV}$	$E_{T}^{\gamma}>250 \mathrm{GeV}$	
	$0<\|\eta\|<1.37$	$0<\|\eta\|<1.37$	$1.52<\|\eta\|<2.37$
syst. from mass window var.:	0.3%	0.7%	
syst. from tag-n-probe and real f.r.:	3%	15%	10%
Background fit variation	4%	14%	3%
Total syst.:	4%	20%	10%

Table 34: Electron-to-photon fake rate systematics components.

$\mathrm{e} \rightarrow \gamma$ misID background: Z-peak method

$e \rightarrow \gamma$ misID background: Z-peak method

jet \rightarrow ץ misID background: ABCD method

- Tight and isolated region (region A - equivalent to $Z \gamma$ signal region described in Sec. 4.7): events have a leading photon candidate that is isolated $\left(E_{\mathrm{T}}^{\text {cone20 }}-0.065 p_{\mathrm{T}}^{\gamma}<0 \mathrm{GeV}\right)$ and passes the tight selection.
- Tight but not isolated region (control region B): events have a leading photon candidate that is not isolated ($E_{\mathrm{T}}^{\text {cone20 }}-0.065 p_{\mathrm{T}}^{\gamma}>$ iso gap) and passes the tight selection.
- Non-tight and isolated region (control region C): events have a leading photon candidate that is isolated ($E_{\mathrm{T}}^{\text {cone20 }}-0.065 p_{\mathrm{T}}^{\gamma}<0 \mathrm{GeV}$) and passes the non-tight selection.
loose'2: $w_{\mathrm{s} 3}, F_{\text {side }}$
- loose'3: $w_{\mathrm{s} 3}, F_{\text {side }}, \Delta E$
- loose'4: $w_{\mathrm{s} 3}, F_{\text {side }}, \Delta E, E_{\text {ratio }}$
- loose' 5: $w_{\mathrm{s} 3}, F_{\text {side }}, \Delta E, E_{\text {ratio }}, w_{\mathrm{tot}}$,
- Non-tight and not isolated region (control region D): events have a leading photon candidate that is not isolated ($E_{\mathrm{T}}^{\text {cone20 }}-0.065 p_{\mathrm{T}}^{\gamma}>$ iso gap $)$ and passes the non-tight selection.

$$
N_{\mathrm{A}}^{\mathrm{Z}(\nu \bar{v}) \gamma}=\tilde{N}_{\mathrm{A}}-R\left(\tilde{N}_{\mathrm{B}}-c_{\mathrm{B}} N_{\mathrm{A}}^{\mathrm{Z}(\nu \bar{v}) \gamma}\right) \frac{\tilde{N}_{\mathrm{C}}-c_{\mathrm{C}} N_{\mathrm{A}}^{\mathrm{Z}(\nu \bar{v}) \gamma}}{\tilde{N}_{\mathrm{D}}-c_{\mathrm{D}} N_{\mathrm{A}}^{\mathrm{Z}(\nu \bar{v}) \gamma}}
$$

$$
\begin{array}{ll}
N_{\mathrm{A}}=N_{\mathrm{A}}^{\mathrm{Z}(\nu \bar{v}) \gamma}+N_{\mathrm{A}}^{\mathrm{bkg}}+N_{\mathrm{A}}^{\mathrm{jet} \rightarrow \gamma} ; & c_{\mathrm{B}}=\frac{N_{\mathrm{B}}^{\mathrm{Z}(\nu \bar{v}) \gamma}}{N_{\mathrm{A}}^{\mathrm{Z}(\nu \bar{v}) \gamma}} ; \\
N_{\mathrm{B}}=c_{\mathrm{B}} N_{\mathrm{A}}^{\mathrm{Z}(\nu \bar{v}) \gamma}+N_{\mathrm{B}}^{\mathrm{bkg}}+N_{\mathrm{B}}^{\mathrm{jet} \rightarrow \gamma} ; & N_{\mathrm{C}}^{\mathrm{Z}(\nu \bar{v}) \gamma} \\
N_{\mathrm{C}}=c_{\mathrm{C}} N_{\mathrm{A}}^{\mathrm{Z}(\nu \bar{v}) \gamma}+N_{\mathrm{C}}^{\mathrm{bkg}}+N_{\mathrm{C}}^{\mathrm{jet} \rightarrow \gamma} ; & c_{\mathrm{C}}=\frac{N_{\mathrm{C}}^{\mathrm{Z}(\bar{v}) \gamma}}{N_{\mathrm{A}}^{\mathrm{Z}}} ; \\
N_{\mathrm{D}}=c_{\mathrm{D}} N_{\mathrm{A}}^{\mathrm{Z}(\nu \bar{v}) \gamma}+N_{\mathrm{D}}^{\mathrm{bkg}}+N_{\mathrm{D}}^{\mathrm{jet} \rightarrow \gamma} ; & c_{\mathrm{D}}=\frac{N_{\mathrm{D}}^{\mathrm{Z}(v \bar{v}) \gamma}}{N_{\mathrm{A}}^{\mathrm{Z}(\nu \bar{v}) \gamma}} .
\end{array}
$$

$$
a=c_{\mathrm{D}}-R c_{\mathrm{B}} c_{\mathrm{C}}
$$

$$
N_{\mathrm{A}}^{\mathrm{Z}(\nu \bar{v}) \gamma}=\frac{b-\sqrt{b^{2}-4 a c}}{2 a}
$$

	Data	$W \gamma$	$e \rightarrow \gamma$	$t t \gamma$	$\gamma+$ jet	$Z(l l) \gamma$
A	23375 ± 153	3420 ± 21	2608 ± 11	178 ± 3	8123 ± 82	211 ± 4
B	270 ± 16	17.7 ± 1.3	4.269 ± 0.016	0.46 ± 0.14	7 ± 3	0.6 ± 0.2
C	4393 ± 66	108 ± 3	92.8 ± 0.3	6.1 ± 0.5	259 ± 13	7.1 ± 0.6
D	497 ± 22	0.6 ± 0.2	0 ± 0	0.07 ± 0.05	0.06 ± 0.06	0 ± 0

jet $\rightarrow \gamma$ misID background: slice method

To take into account the dependence of the estimate on the photon isolation, the non-isolated regions are split into a set of into successive intervals (slices) based on the photon isolation. In this way, the number of $j e t \rightarrow \gamma$ background events in each non-isolated slice i of the CR1 $N_{\mathrm{CR} 1(\mathrm{i})}^{j e t \rightarrow \gamma}$ is derived as follows:

$$
N_{\mathrm{CR} 1(\mathrm{i})}^{j e t \rightarrow \gamma}=N_{\mathrm{CR} 1(\mathrm{i})}^{\mathrm{data}}-N_{\mathrm{CR} 1(\mathrm{i})}^{\mathrm{Z}(v \bar{v}) \gamma}-N_{\mathrm{CR} 1(\mathrm{i})}^{\mathrm{bkg}},
$$

Four isolation slices are chosen: $[0.065,0.090,0.115,0.140,0.165]$.

$$
\begin{gathered}
H_{j e t \rightarrow \gamma}^{[0 . A, 0 . B]}=H_{\mathrm{data}}^{[0 . A, 0 . B]}[X]-H_{\mathrm{sig}}^{[0 . A, 0 . B]}[X]-H_{\mathrm{bkg}}^{[0 . A, 0 . B]}[X], \\
\Delta^{C R 2}[X]=\frac{1}{2}\left(\frac{H_{j e t \rightarrow \gamma}^{[0.065,0.09]}[X]-H_{j e t \rightarrow \gamma}^{[0.115,0.14]}[X]}{2}+\frac{H_{j e t \rightarrow \gamma}^{[0.09,0.115]}[X]-H_{j e t \rightarrow \gamma}^{[0.14,0.165]}[X]}{2}\right), \\
H_{j e t \rightarrow \gamma}^{S R}=H_{j e t \rightarrow \gamma}^{[0.065,0.09]}[X]+\Delta^{C R 2}[X] .
\end{gathered}
$$

jet $\rightarrow \gamma$ misID background: slice method

jet $\rightarrow \gamma$ misID background: slice method

The detailed procedure of $j e t \rightarrow \gamma$ background shape estimation is presented in Section 5.2.2. To increase the statistics in the anti-isolated slices, the cut on track isolation is relaxed. Figure 51 shows that the shape of the $j e t \rightarrow \gamma$ distribution in the SR does not change when relaxing track isolated in the CR2. Figure 52 shows that the shape of the jet $\rightarrow \gamma$ distribution for $E_{\mathrm{T}}^{\mathrm{miss}}$ in the SR does not change when relaxing cut on $E_{\mathrm{T}}^{\mathrm{miss}}$ significance in the CR2.

Unfolding procedure

$$
R_{i j}=\frac{1}{\alpha_{i}} \varepsilon_{j} M_{i j}, \quad M_{i j}=\frac{N_{i j}^{\text {det. } \cap \text { fid. }}}{N_{j}^{\text {det. } \cap \mathrm{fid} .}} .
$$

$\alpha_{i}=\frac{N_{i}^{\text {det. } \cap \text { fid. }}}{N_{i}^{\text {det. }}}, \quad \varepsilon_{j}=\frac{N_{j}^{\text {det. } \cap \text { fid. }}}{N_{j}^{\text {fid. }}}$.

$$
\frac{\sigma_{j}}{\Delta x_{j}}=\frac{N_{j}^{\mathrm{unfold}}}{\left(\int \mathcal{L} d t\right) \cdot \Delta x_{j}}
$$

The unfolding procedure by folding can be performed with following steps:

- Myltiplying the response matrix \hat{R} and the particle-level distribution:

$$
F_{i j}=R_{i j} \cdot T_{j}=\left(\begin{array}{c}
\vec{r}_{1} \\
\vec{r}_{1} \\
\vdots \\
\vec{r}_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
t_{1} \\
t_{1} \\
\vdots \\
t_{n}
\end{array}\right)=\left(\begin{array}{c}
\vec{f}_{1} \\
\vec{f}_{1} \\
\vdots \\
\vec{f}_{n}
\end{array}\right) \text {, }
$$

- Myltiplying each of the n histograms by the NFs $\mu_{j}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$:

$$
G_{i j}=F_{i j} \cdot \mu_{j}=\left(\begin{array}{c}
\vec{f}_{1} \\
\vec{f}_{1} \\
\vdots \\
\vec{f}_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
\mu_{1} \\
\mu_{1} \\
\vdots \\
\mu_{n}
\end{array}\right)=\left(\begin{array}{c}
\vec{g}_{1} \\
\vec{g}_{1} \\
\vdots \\
\vec{g}_{n}
\end{array}\right) .
$$

The next step is to add all vecors \vec{g}_{j}. As a result we get one histogram with m bins.

- Fit the folded distribution by tuning NFs μ_{j}. As a result one gets the fitted parameters $\mu_{j}^{\prime}=$ $\left(\mu_{1}^{\prime}, \mu_{2}^{\prime}, \ldots, \mu_{n}^{\prime}\right)$.
- Dot multiply normalised NFs and truth histogram.

Unfolding procedure

Fiducial region:

Observable	Binning
p_{T}^{γ}	$[150,200],[200,250],[250,350],[350,450],[450,600],[600,1100]$
$E_{\mathrm{T}}^{\text {miss }}$	$[130,200],[200,250],[250,350],[350,450],[450,600],[600,1100]$
$N_{\text {jets }}$	$[-0.5,0.5],[0.5,1.5],[1.5,2.5],[2.5,7.5]$
η_{γ}	$[-3,-2,-1,0,1,2,3]$
$p_{T}^{j_{1}}$	$[50,100,150,250,350,450,600,1100]$
$p_{T}^{j_{2}}$	$[50,100,150,250,350,450,600,1100]$
$\|\Delta \phi(j, j)\|$	$[0.0-3.2], 16$ bins
$\left\|\Delta \phi\left(p_{T}^{\text {miss }}, j\right)\right\|$	$[0.4-3.2], 14$ bins

Table 29: Summary of the differential measurements in the analysis

Extended fiducial region:

Category	Cut
Photons	Isolated, $E_{\mathrm{T}}^{\gamma}>150 \mathrm{GeV}$
	$\|\eta\|<2.37$
Jets	$\|\eta\|<4.5$
	$p_{\mathrm{T}}>50 \mathrm{GeV}$
	$\Delta R($ jet,$\gamma)>0.3$
Neutrino	$p_{\mathrm{T}}^{v \bar{\nu}}>130 \mathrm{GeV}$

Unfolding procedure

Unfolding procedure

OMC method

Overlay Monte-Carlo (OMC) Method

Strategy:

1. To estimate the number of pile-up events (referred to as $A+B$) in the diboson production (referred to as $A B$) the overlay MonteCarlo (OMC) method uses separate A and B samples at the particle-level.
2. The overlay of B over A is performed by adding objects (photons, jets, etc.) from B into $A ;$
3. The variables that define the $A B$ final state are calculated in order to form a valid combined $A+B$ event (referred to as OMC event). These variables are used to be checked against analysis selections;
4. The weight of the combined $A+B$ event is determined as:
5. The number of $A+B$ events at the particle-level is

$$
w_{\mathrm{A}+\mathrm{B}}=\frac{w_{\mathrm{A}} w_{\mathrm{B}}}{\left\langle w_{\mathrm{A}}\right\rangle\left\langle w_{\mathrm{B}}\right\rangle} \frac{L \sigma_{\mathrm{A}+\mathrm{B}}}{N_{\mathrm{OMC}}}, \sigma_{\mathrm{A}+\mathrm{B}}=\langle\mu\rangle \frac{\sigma_{\mathrm{A}} \sigma_{\mathrm{B}}}{\sigma_{\text {inel }}}
$$ defined as the sum of OMC sample weights:

$$
N_{\mathrm{A}+\mathrm{B}}^{\mathrm{gen}}=\sum w_{\mathrm{A}+\mathrm{B}}
$$

6. The predicted number of pile-up events at the detector-level in the SR is estimated as follows:

$$
N_{\mathrm{A}+\mathrm{B}}^{\mathrm{rec}}=N_{\mathrm{A}+\mathrm{B}}^{\mathrm{gen}} \mathrm{C}
$$

*Correction factor (C) is defined as the reconstructed MC signal $A B$ events passing all selections divided by the number of MC signal $A B$ events at the particle-level within the fiducial region.

OMC method

- The Z boson (taken as A) and the photon (taken as B) components of $\mathrm{Z}+\gamma \mathrm{OMC}$ events are taken from Zj and $\gamma+\mathrm{j}$ MC samples, respectively;
- The particle-level photon from $\gamma+j$ process is being overlayed over random particle-level Z boson from $Z j$ process until it becomes a part of $Z+\gamma$ OMC event, that passes the fiducial
 region requirements:
- The procedure for such a combination of events is performed for every $\gamma+j$ sample with a certain Zj sample in each of the MC simulation campaigns (MC16a, MC16d, MC16e);
- Iterating through all γ^{+j} events requires significant computing resources, therefore only 100k events of every statistically large γ^{+j} sample are used to form OMC sample;
- The total number of pile-up events at the particle-level is obtained by combining each $\gamma+j$ sample sequentially with each Zj sample.

Definition of the fiducial region:

Category	Cut
Photons	Isolated, $E_{\mathrm{T}}^{\gamma}>150 \mathrm{GeV}$
	$\|\eta\|<2.37$ excl. $1.37<\|\eta\|<1.52$
Jets	$\|\eta\|<4.5$
	$p_{T}>50 \mathrm{GeV}$
	$\Delta R(j e t, \gamma)>0.3$
Lepton	$N_{l}=0$
Neutrino	$p_{\mathrm{T}}^{\nu \nu}>130 \mathrm{GeV}$
Events	Significance $E_{\mathrm{T}}^{\text {miss }}>11$
	$\left\|\Delta \phi\left(\vec{p}_{\mathrm{T}}^{\text {miss }}, \gamma\right)\right\|>0.6$
	$\left\|\Delta \phi\left(\vec{p}_{\mathrm{T}}^{\text {miss }}, j_{1}\right)\right\|>0.3$

The weight and the cross section of the combined $Z+\gamma$ event:

$$
\begin{gathered}
w_{Z+\gamma}=\frac{w_{Z} w_{\gamma}}{\left\langle w_{Z}\right\rangle\left\langle w_{\gamma}\right\rangle} \frac{L \sigma_{Z+\gamma}}{N_{\mathrm{OMC}}} \\
\sigma_{Z+\gamma}=\langle\mu\rangle \frac{\sigma_{Z} \cdot S F_{Z} \cdot \sigma_{\gamma} \cdot S F_{\gamma}}{\sigma_{\text {inel }}}
\end{gathered}
$$

OMC method

- The C-factor is parameterized by the transverse momentum of the photon, since the total number of pile-up events at the particle-level is summed from the number of pile-up events calculated for each $\gamma+j$ sample.

The estimates of correction factor obtained with $Z(v v) y$ MC signal for 4 intervals of the transverse momentum of the photon

$$
C=\frac{N_{Z \gamma}^{\text {rec }}}{N_{Z \gamma}^{\text {gen }}}
$$

[150; 280; 500; 1000; 2000] GeV:

p_{T}^{γ}, ГэB	MC16a	MC16d	MC16e
$150-280$	0.8685 ± 0.0018	0.8155 ± 0.0017	0.8246 ± 0.0014
$280-500$	0.853 ± 0.005	0.818 ± 0.004	0.822 ± 0.004
$500-1000$	0.841 ± 0.015	0.803 ± 0.014	0.829 ± 0.012
$1000-2000$	0.80 ± 0.08	0.84 ± 0.11	0.73 ± 0.06

$$
N_{Z+\gamma}^{S R}=N_{Z+\gamma}^{F R} C
$$

events due to multiple pp collisions: $N_{Z+\gamma}^{S R}=2.938 \pm 0.018$ (stat.) events; *(more in back-up)

The statistical uncertainties come from:

\geqslant The uncertainty of the weights w_{y} and w_{Z} of events used in the combination of $\mathrm{\gamma}+\mathrm{j}$ samples with Zj samples;
) The uncertainty of C-factor;
) The uncertainty of SF-factors;
The fraction of pile-up events in relation to the data obtained using the OMC method is (0.01257 ± 0.00011) \%.

