

# Модель микроПЭТ на основе неорганических сцинтилляторов в среде Geant4

Студент: Конотоп Алексей Давидович, студент группы Б20-102 кафедры №40 «Физика элементарных частиц и космология» ИЯФиТ НИЯУ МИФИ, лаборант-исследователь ЛФРП ОФН НИЦ «Курчатовский институт»

Научный сотрудник: Филипп Андреевич Дубинин, старший преподаватель кафедры №40 «Физика элементарных частиц и космология», научный сотрудник ЛФРП ОФН НИЦ «Курчатовский институт»

Консультант: Мачулин Игорь Николаевич, старший преподаватель кафедры №40 «Физика элементарных частиц и космология», старший научный сотрудник ЛФРП ОФН НИЦ «Курчатовский институт»

#### Positron emission and positron-electron annihilation

#### Принципы ПЭТ-сканирования

1. Радиоактивный распад

- 2.Аннигиляция позитрона, рождение двух гамма-квантов
- 3. Детектирование гамма-квантов
- 4.Восстановление изображения

Фтордезоксиглюкоза (FDG):

FDG является наиболее часто используемым радиофармпрепаратом в ПЭТ-визуализации. Он содержит радиоактивный изотоп **F-18** и имитирует глюкозу. Из-за высокого потребления глюкозы раковыми клетками и некоторыми другими активными тканями, FDG-ПЭТ широко используется для диагностики, определения стадии и мониторинга рака.



Gamma ray detectors

PET scanner

| Радионуклид      | Полураспад | Тип распада          | E <sub>max</sub> , МэВ |  |
|------------------|------------|----------------------|------------------------|--|
| <sup>11</sup> C  | 20,4 мин   | β+(100)              | 0,970                  |  |
| <sup>13</sup> N  | 10 мин     | β <sup>+</sup> (100) | 1,2                    |  |
| <sup>15</sup> O  | 2 мин      | β <sup>+</sup> (100) | 1,74                   |  |
| <sup>18</sup> F  | 110 мин    | β <sup>+</sup> (97)  | 0,64                   |  |
| <sup>68</sup> Ga | 68 мин     | β <sup>+</sup> (89)  | 1,9                    |  |
| <sup>82</sup> Rb | 72 c       | β <sup>+</sup> (95)  | 3,25                   |  |
| <sup>124</sup>   | 4,2 дней   | β <sup>+</sup> (23)  | 2,14                   |  |



# Модель ПЭТ

Неорганические сцинтилляторы GAGG(Ce) 3x3x20 мм



| 0.8                    |                                            |          | Плотность,<br>г/см² | Zeff | λ <sub>max</sub> ,<br>HM | t <i>,</i> нс       | Световыход,<br>фотон/кэВ | Гигросокпичность | Радиоактивность |
|------------------------|--------------------------------------------|----------|---------------------|------|--------------------------|---------------------|--------------------------|------------------|-----------------|
| 0.4<br>0.2<br>0<br>450 | 0 500 550 600 650 700<br>W(sucleagth (am)) | CsI(TI)  | 4.51                | 54   | 550                      | 1.05                | 54                       | Да               | Нет             |
|                        |                                            | LYSO(Ce) | 7.2                 | 65   | 420                      | 40                  | 32                       | Нет              | Да              |
|                        |                                            | BGO      | 7.13                | 73   | 480                      | 300                 | 10                       | Нет              | Нет             |
|                        |                                            | Nal(Tl)  | 3.67                | 50   | 415                      | 230                 | 38                       | Да               | Нет             |
|                        | Emission Spectrum                          | GAGG(Ce) | 6.63                | 54.4 | 520                      | 87(90%)<br>255(10%) | 50                       | Нет              | Нет             |

# Модель ПЭТ

Неорганические сцинтилляторы GAGG(Ce) 3x3x20 мм





#### SiPM Onsemi FC30035

| Размер<br>сенсора | Размер<br>ячейки | Параметр                                  | Тип.                | 45                                                                              |
|-------------------|------------------|-------------------------------------------|---------------------|---------------------------------------------------------------------------------|
| Змм               | 35мкм            | Напряжение<br>пробоя(V <sub>br</sub> ), В | 24.2 - 24.7         | 40<br>40<br>35<br>30<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>4 |
|                   |                  | Пик длины волны(I <sub>p</sub> ),<br>нм   | 420                 |                                                                                 |
|                   |                  | PDE, %                                    | 31 (Vbr+2.5V)       |                                                                                 |
|                   |                  | Усиление                                  | 3 * 10 <sup>6</sup> |                                                                                 |
|                   |                  | Темновой счёт, кГц                        | 300 - 860           | 300 350 400 450 500 550 600 650 700 750 800 850 900 950<br>Wavelength (nm)      |

# Характеристики модели ПЭТ

Лучшее энергетическое разрешение (511 кэВ) - 14 % Лучшее ЭР одиночного детектора - 8% @ 662 кэВ Временное разрешение - 1.80 ± 0.07 нс (одиночный)



#### Восстановление синограммы

Φ

#### Отбор:

Ampl > 250 канАЦП

 $\Delta T < 4$ нс

#### Нецентральное положение



Синограмма микроПЭТ 32 канала

# Восстановление изображения





# Создание модели

- Тестирование различных неорганических сцинтилляторов
- Отработка большего числа каналов
- Быстрый набор большой статистики
- Отработка алгоритмов восстановления синограмм и изображений





# Модель ПЭТ в среде Geant4

Спектр с одного из каналов модели



#### Восстановление синограммы

#### моделирования

Выборка:

Е = 511 кэВ





Нельзя просто так взять

и построить синограмму

Угол Синограмма 32 канала для модели

Модель на 32 канала

### Восстановление изображения

![](_page_11_Picture_1.jpeg)

Изображение из реальных данных

![](_page_11_Picture_3.jpeg)

Изображение из моделирования (перевёрнуто)

### Параметры эффективности

| Положение<br>источника, мм | GAGG(Ce) | LYSO(Ce) | BGO    |  |
|----------------------------|----------|----------|--------|--|
|                            | Eff., %  | Eff, %   | Eff, % |  |
| 0                          | 2.1      | 7.6      | 11.8   |  |
| 10                         | 1.4      | 5.2      | 8.2    |  |
| 20                         | 1.7      | 6.4      | 10.2   |  |

Геометрическая эффективность установки на 64 канала

#### Заключение

- Создана модель 32-канального ПЭТ в системе Geant4
- Восстановлено 2д изображение источника по экспериментальным

данным и данным моделирования.

- Картины идентичны без учёта вклада шумов и неоднородностей установки.
- По данным моделирования рассчитана геометрическая эффективность установки в плоскости.
- Наилучшую эффективность показал кристалл BGO

### СПАСИБО ЗА ВНИМАНИЕ!

По вопросам обращаться: Конотоп Алексей Давидович, +7(964)522-06-69 akonotop03@mail.ru