Heavy ion collisions

Mikhail Mamaev

NRNU MEPhI 18/04/2024, Moscow, Russia

Why heavy ion collisions are of a great importance?

Within the overlap region the strongly interacting matter is produced

Establishing the properties of the matter

Linking to the astrophysical objects

QCD Phase diagram: high baryon density region

Varying the energy of the collision one can achieve different properties of strongly interacting matter

• Large Hadron Collider (LHC)

○
$$\sqrt{s_{NN}}$$
~ 5 TeV

 Relativistic Heavy Ion Collider (RHIC)

High energy heavy ion collisions

In heavy ion collisions the conditions achieved similar to the early universe: $\mu_{\rm B}$ ~0, T~150 Mev

Quark deconfinement in higher energy collisions

Number of quark scaling suggests that free quarks started to fly-out of the overlap region

Suggested properties of the Quark-Gluon Matter

- In p-p collisions two produced particles fly back-to-back
- In A+A collisions the second jet is suppressed by the medium of strongly interacting matter

The lowest viscosity fluid

Comparing the experimental data from STAR with hydrodynamic predictions it was established that QGM possesses lowest known viscosity

Heavy ion collisions at lower energies

Nuclotron energies: $\sqrt{s_{NN}}$ = 2.3-3.5 GeV Achievable Net Baryon densities: ~3-5 ρ_0 ρ_0 is nuclear saturation density

The conditions are similar to those in the core of neutron stars

Conditions achieved are similar to those in compact stars except for the isospin asymmetry

HIC-matter evolution

NS-merger matter evolution

EOS for high baryon density matter

EOS relates the properties of the matter (pressure, temperature, etc.) The binding energy per nucleon:

$$E_A(
ho,\delta) = E_A(
ho,0) + E_{sym}(
ho)\delta^2 + O(\delta^4)$$

Energy for symmetric system Symmetry energy

Isospin asymmetry is described as:

$$\delta = (
ho_n -
ho_p)/
ho$$

Observables from heavy ion collision experiments constrain the EOS

Sub-threshold strangeness production

π/K ratio is
 sensitive to the
 pressure built
 within the overlap
 region

Enhanced production in central collisions suggests higher pressure

Sub-threshold multi-strange hyperons production

Subthreshold production of multi-strange hyperons is sensitive to the EOS

Hypernuclei production: Y-N interaction

arXiv:2209.05009v1

Enhanced yield of hypernuclei is expected at the beam energies of BM@N

Studying the Y-N interactions may help to establish the properties of dense matter

Measurements of the hypernuclei on HIC

The lifetime of He3 Λ is comparable to that of Λ

Studying the properties of hypernuclei may help to address the stability of heavy NS

Sensitivity of the collective flow to the EOS

Azimuthal distribution of produced particles with respect to RP:

$$ho(arphi-\Psi_{RP})=rac{1}{2\pi}(1+2\sum_{n=1}^\infty v_n\cos n(arphi-\Psi_{RP}))$$

Coefficients of the decomposition are referred to as collective flow

$$v_n = \langle \cos \left[n (arphi - \Psi_{RP})
ight]
angle$$

Bounce-off

 v_1 is called directed and v_2 is called elliptic flow

- Compressibility of the created in the collision matter
- Time of the interaction between the matter within the overlap region and spectators

Squeeze-out

Interpretation of the previous flow data

P. DANIELEWICZ, R. LACEY, W. LYNCH 10.1126/science.1078070

- The flow data from E895 experiment have ambiguous interpretation: v₁ suggests hard EOS while v₂ corresponds to soft EOS
 - Additional measurements are essential to clarify the previous measurements

Extracting equation of state of dense matter

10.1126/science.1078070

Symmetry 2021, 13, 400

HIC-data together with the GW-data may shed lig on the properties of the dense matter within the NS-core

Summary

- The matter in heavy ion collisions at higher energies is comparable to that existed in the first moments after the Big Bang
- In the higher-energy collisions quark-deconfinement is observed
- The quark-gluon matter has the lowest viscosity among all the known matter
- Lower energy collisions probe the region of QCD-diagram with conditions similar to that of NS-core and NS-mergers
- Sub-threshold strangeness production is a sensitive probe of the pressure achieved in HIC
- Enhanced hypernuclei production in lower-energy collisions provides the possibility to study their properties
- Anisotropic flow is a sensitive probe of the conditions achieved in HIC

QCD Phase diagram: high baryon density region

Varying the energy of the collision one can achieve different properties of strongly interacting matter

Nuclotron energies: $\sqrt{s_{NN}}$ = 2.3-3.5 GeV Achievable Net Baryon densities: ~3-5p₀ ρ_0 is nuclear saturation density

The conditions are similar to those in the core of neutron stars

M. Hanauske et al., J. Phys.: Conf. Ser. 878 012031

The BM@N experiment (JINR, Dubna)

4 silicon stations + 7 GEM stations within magnetic field for charged particles trajectories reconstruction (see talk of A. Galavanov)

Momentum resolution

Nuclotron beam:

- from p to Au
- heavy ion energy 1-3.8 GeV/n
- Au intensity ~ few 10^6 Hz

Light meson yield in technical run

BM@N is capable of extracting the yield of light mesons such as π , K

Hyperon extraction performance in technical run

BM@N is capable of measuring the produced hyperons

BM@N upgrade for the upcoming physical run

- The tracking system have been upgraded to cover the full available acceptance
- Scincilator wall and Silicon Hodoscope were added to the setup
- Beam pipe with vacuum up to 10⁻⁵ Torr.

Independent centrality estimation sources

HADES; Phys.Rev.C 102 (2020) 2, 024914

Projectile spectators can be utilized to estimate centrality independently to the multiplicity of the produced particles thus avoiding possible autocorrelations

A number of produced protons is stronger correlated with the number of produced particles (track & RPC+TOF hits) than with the total charge of spectator fragments (FW)

Centrality determination at BM@N

I. Segal and D. Idrisov

- Fit results are good both for MC-Glauber and Inverse Γ-fit methods
- Impact parameter distributions in centrality classes are well-reproduced

Comparison of different estimators and methods

- Impact parameter distributions in different centrality classes are similar for different centrality classes
- The distributions for spectators energy are wider because of the width of b and energy correlation

Comparison of the HADES, STAR FXT and BM@N data

Εχρ.	year	A+A	E _{kin} AGeV	Statistics	Ξ^{-}	Ω^{-}	Hypernuclei
HADES	2012	Au+Au	1.23	$7 \cdot 10^9$	×	×	×
HADES	2019	Ag+Ag	1.58	$1.4 \cdot 10^{10}$	×	×	$800\frac{3}{\Lambda}H$
STAR FxT	2018	Au+Au	2.9	$3\cdot 10^8$	10^{4}	×	$10^4 \frac{3}{\Lambda} H$
							$6\cdot10^3 \frac{4}{\Lambda}H$
STAR FxT	2021	Au+Au	2.9	$2 \cdot 10^{9}$	$7 \cdot 10^4$	×	$7 \cdot 10^4 \frac{3}{\Lambda} H$
							$4 \cdot 10^4 \frac{4}{\Lambda} H$
BM@N	sim.	Au+Au	3.8	$2 \cdot 10^{10}$	$5 \cdot 10^{6}$	10^{5}	$10^6 \frac{3}{\Lambda} \hat{H}$
full							${}^4_{\Lambda}$ H, ${}^5_{\Lambda}$ He
program							⁷ _Å Li, ⁷ _Å He
							$10^2 \frac{5}{\Lambda\Lambda}$ H

- HADES and BM@N data are complementary science HADES lacks the Ω and Ξ hyperons
- Hypernuclei statistics at BM@N is expected to be ~100 times higher

Feasibility studies towards hyperon reconstruction

- High statistics will enable for multidifferential measurements of (multi-) strange particles and hypernuclei
- Colliding different system may shed light on the mechanisms of strangeness production in the region of large baryon densities

Azimuthal acceptance of the BM@N experiment

Rec R1: DCMQGCM-SMM Xe+Cs@4A GeV

Using the additional sub-events from tracking provides a robust combination to calculate resolution

v₁: DCMQGCM-SMM Xe+Cs

Reasonable agreement between model and reconstructed data

Directed and elliptic flow in Xe+Cs@3A GeV (JAM)

- Good agreement between reconstructed and model data
- Approximately 250-300M events are required to perform multidifferential measurements of v_n

Nuclotron ion accelerator facility JINR, Dubna

