Слияния первичных черных дыр

Виктор Стасенко НГУ, НИЯУ МИФИ

Очем

- Введение в ПЧД
- Кандидат в темную материю
- Указания на ПЧД
- Слияния ПЧД в свете наблюдений LIGO-Virgo-KAGRA
- Слияния при больших z

Введение

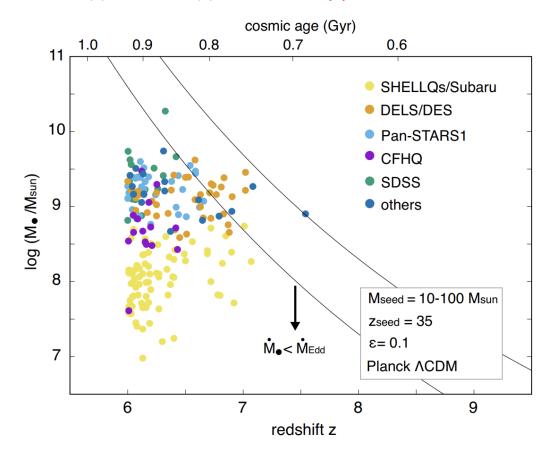
- ПЧД гипотетические ЧД, возникающие в результате коллапса флуктуаций плотности $\delta \rho/\rho{\sim}1$ глубоко на РД стадии
- Идея была предложена Зельдовичем и Новиковым в 1967
- Позже развита Хокингом и Карром в 1971
- Основной механизм генерации таких больших флуктуаций инфляция. Хотя рассматриваются и коллапс доменных стенок, струн, ...

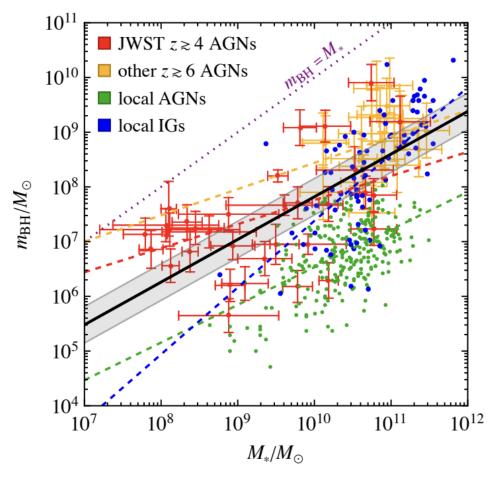
ПЧД кандидат в темную материю

Почти во всех массовых диапазонах есть ограничения. Но они модельно зависимы и пересматриваются

B. Carr, F. Kuhnel, Primordial Black Holes as Dark Matter: Recent Developments, 2006.02838

Указания на ПЧД

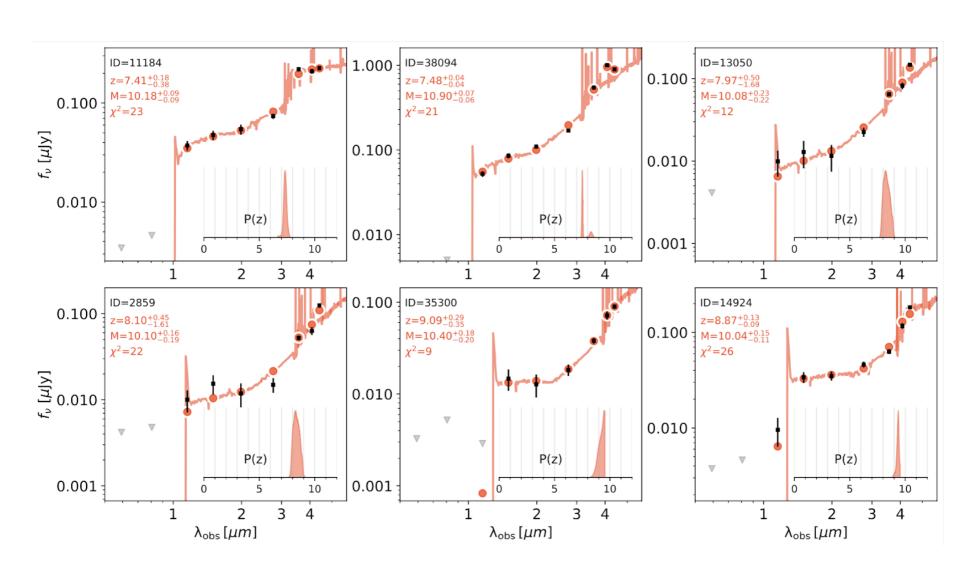

Даже если не вся темная материя состоит из ПЧД, то они все равно могут быть астрофизически значимы


- Сверхмассивные черные дыры в молодой Вселенной
- Ранние галактики Accelerating Early Massive Galaxy Formation with Primordial Black Holes, 2208.13178; Carr and Silk, Primordial Black Holes as Generators of Cosmic Structures, 1801.00672
- ГВ фон от формирования ПЧД и их слияний NANOGrav Hints to Primordial Black Holes as Dark Matter, 2009.08268; Do pulsar timing arrays observe merging primordial black holes? 2306.17836. Будущие наблюдения LISA
- Слияния черных дыр десятков солнечных масс LIGO-Virgo-KAGRA

Много сверхмассивных ЧД в ранней

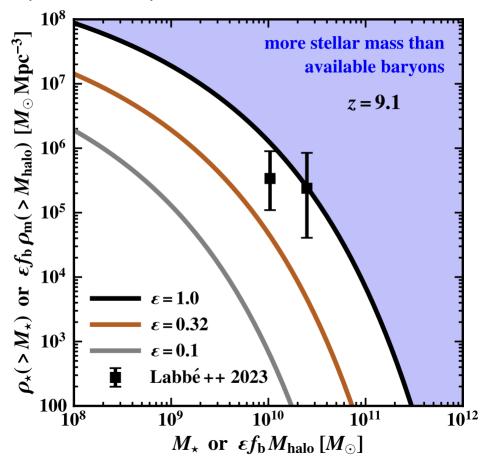
Вселенной

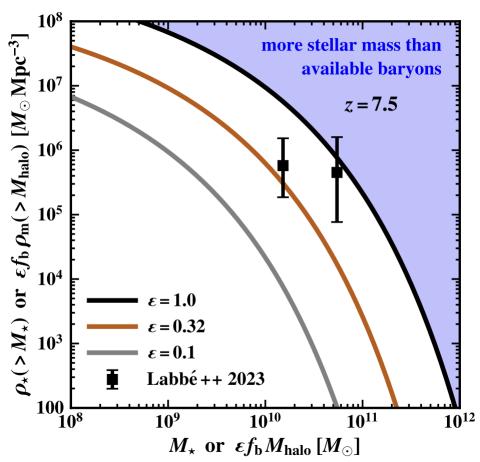
Требуются массивные зародыши (сиды) для наблюдаемых СМЧД 1911.05791



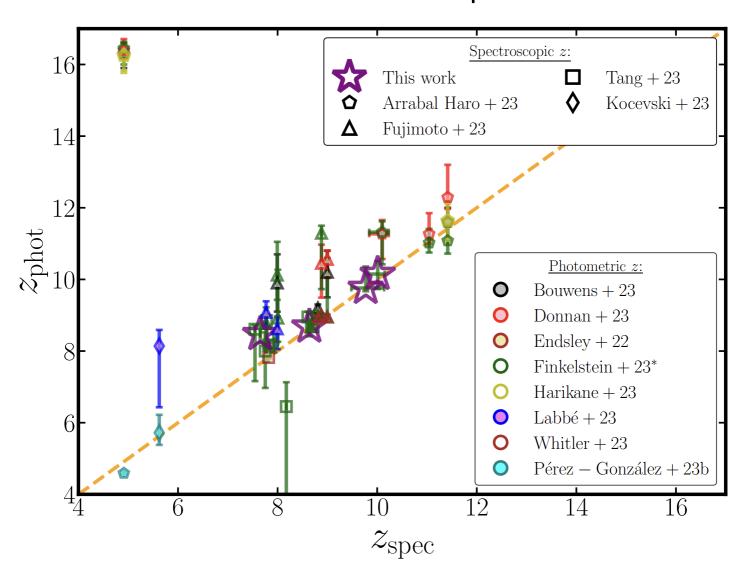
Масса ЧД vs звездная масса хост галактики. Consistency of JWST Black Hole Observations with NANOGrav Gravitational Wave Measurements 2403.19650. JWST и PTA указывают на огромное количество СМЧД

6


Наблюдения JWST

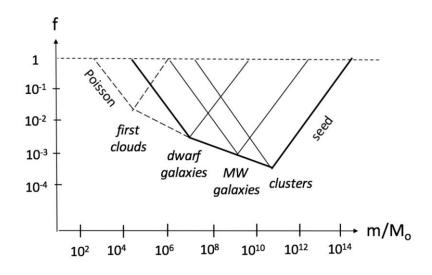

Ранние кандидаты 2207.12446 Labbe et al. 6 галактик $\,M_* > 10^{10} M_\odot$ and $\,7.4 < z < 9.1\,$

Stress Testing ACDM with High-redshift Galaxy Candidates, Michael Boylan-Kolchin 2208.01611

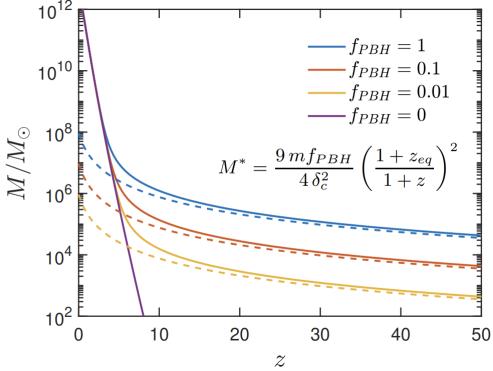

На момент выхода статьи (2022г) это были только кандидаты, но сейчас уже некоторые подтверждены, но с некоторыми оговорками

ε ≤ 0.2 наблюдается сейчас, теоретический верхний предел ε ≤ 0.35

Фотометрическое vs спектроскопическое красное смещение 2304.05378

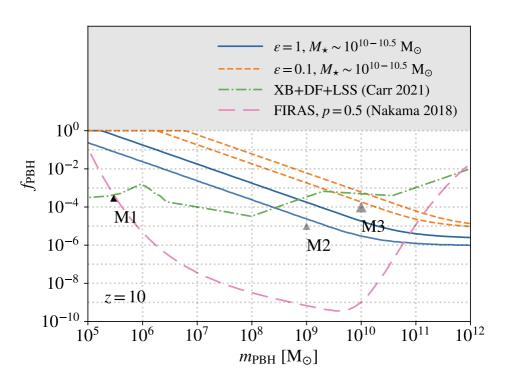

Проблемы может и нет никакой. Определение массы галактик на больших z, как и само z, дело нелегкое. А масса гало в LCDM меняется экспоненциально c z!

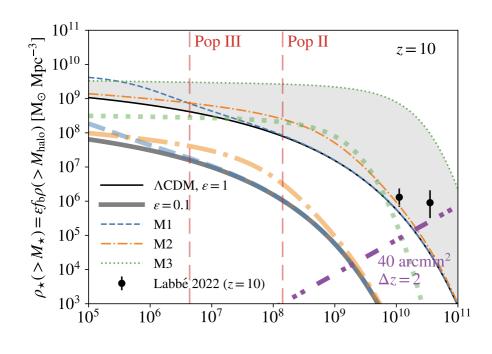
Если tension все-так есть: Primordial Black Holes as Generators of Cosmic Structures (Carr and Silk 1801.00672)


На массовом масштабе М ПЧД создают флуктуации плотности

$$\delta_i \approx \begin{cases} m/M & \text{(seed)} \\ (fm/M)^{1/2} & \text{(Poisson)}, \end{cases}$$

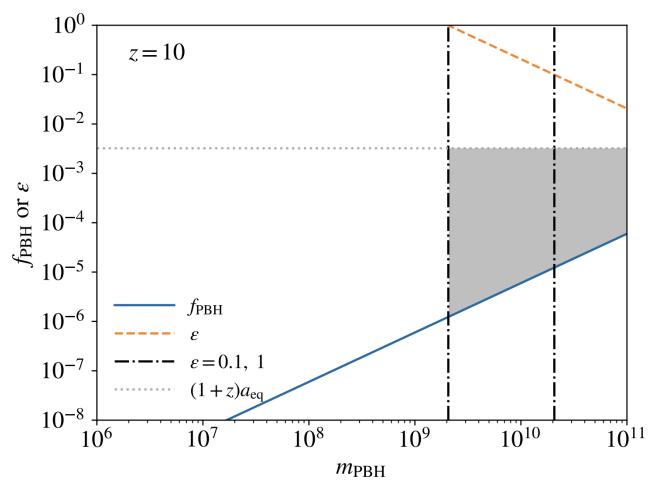
В результате модифицируется СDM спектр мощности





Пример 1сигма гало для m = 10 (2307.12924)

Accelerating early massive galaxy formation with primordial black holes 2208.13178



Poisson halo. Требуются большие доли f или невменяемо большие массы...

Model	$m_{\mathrm{PBH}} \; [\mathrm{M}_{\odot}]$	f_{PBH}	$m_{\mathrm{PBH}}f_{\mathrm{PBH}}~[\mathrm{M}_{\odot}]$
M1	3×10^5	0.0003	90
M2	10^{9}	10^{-5}	10000
M3	10^{10}	10^{-4}	10^{6}

Accelerating early massive galaxy formation with primordial black holes 2208.13178

Seed effect в принципе работает, но также нужны довольно большие массы ПЧД

IВфон

Разумно задаться вопросом а могут ли ПЧД, «объясняющие» массивные кандидаты JWST, быть ответственны за наблюдение ГВ фона по таймингу радиопульсаров?

Определение
$$\Omega_{gw} = rac{1}{
ho_c} rac{d
ho_{gw}}{d\ln f}$$

$$\Omega_{gw} = rac{1}{
ho_c} rac{d
ho_{gw}}{d\ln f}$$
 Полный вклад ГВ $\mathcal{E}_{gw} =
ho_c \int \Omega_{gw} rac{df}{f}$

Пусть N --- число источник в единице объема излучающих на частоте f $\frac{d
ho_{gw}}{d\ln f}=N\frac{dE_{gw}}{d\ln f}$

$$\frac{d\rho_{gw}}{d\ln f} = N \frac{dE_{gu}}{d\ln f}$$

Для двойных ЧД на круговой орбите

$$\frac{dE_{gw}}{d\ln f} = \frac{\pi^{2/3}}{3G} \left(G\mathcal{M}_c \right)^{5/3} f^{2/3} \approx 2.6 \times 10^5 \, M_{\odot} \left(\frac{M}{10^9 M_{\odot}} \right)^{5/3} \left(\frac{f}{\text{nHz}} \right)^{2/3}$$

Чирп масса
$$\; {\cal M}_c = rac{(M_1 M_2)^{3/5}}{(M_1 + M_2)^{1/5}} \;$$

ГВ фон (для справки)

Некоторые сведения про двойные

Время до слияния
$$au=16\,{
m Myr}\left(rac{10^9 M_\odot}{M}
ight)^{5/3}\left(rac{{
m nHz}}{f}
ight)^{8/3}$$

Частота на последней устойчивой орбите $f_{
m ISCO}pprox 1.1\,
m \mu Hz \left(rac{10^9 M_{\odot}}{M}
ight)$

Если источники на разных z

$$\Omega_{gw}(f) = \frac{1}{\rho_c} \int N(z) \frac{dz}{1+z} \left. \left(\frac{dE_{gw}}{d\ln f_r} \right) \right|_{f_r = f(1+z)}$$

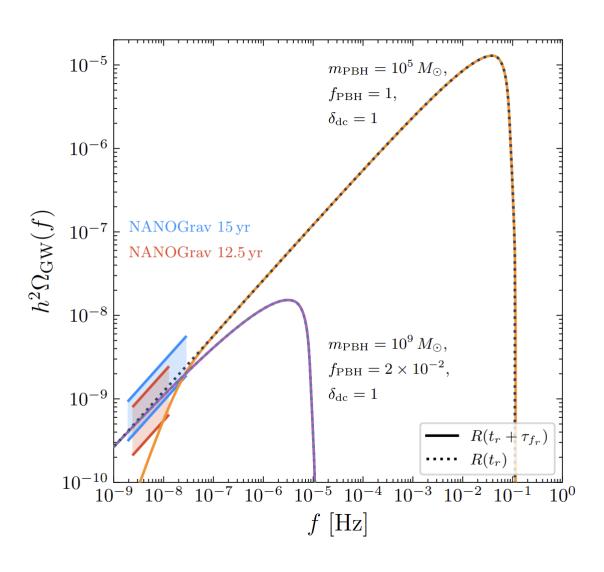
Подробнее см. Phinney astro-ph/0108028

ГВ фон оценка для ПЧД

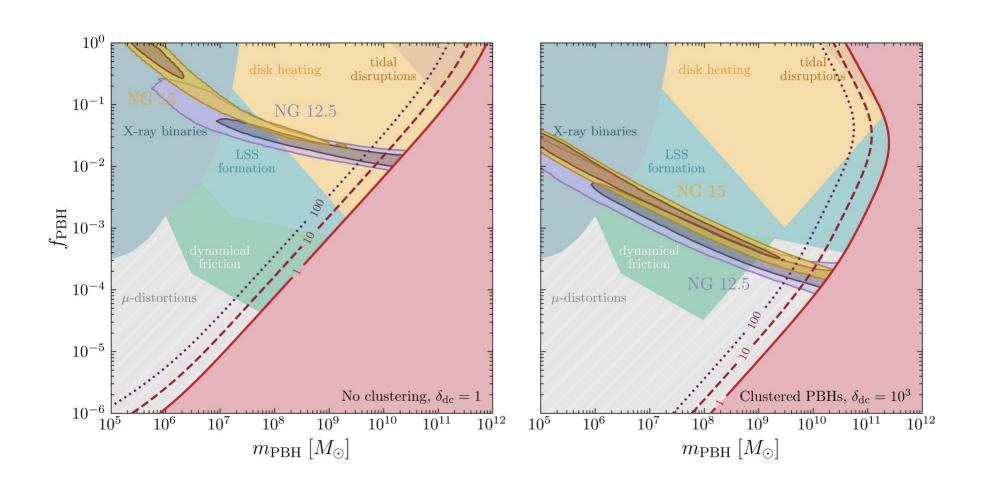
Количество двойных
$$N pprox lpha rac{f_{PBH}
ho_{DM}}{M}$$
 Где $lpha \leq 1$ --- доля двойных от всех ПЧД

Если все двойные излучают примерно сейчас на частоте f (довольно хорошее приближение для тяжелых ПЧД), если не сейчас то в $(1+z)^{1/3}$ будет меньше

$$\Omega_{gw} \sim 2.6 \times 10^{-4} \alpha f_{PBH} \Omega_{DM} \left(\frac{M}{10^9 M_{\odot}}\right)^{2/3} \left(\frac{f}{\text{nHz}}\right)^{2/3}$$


Для случая двойных, формирующихся на RD стадии (что обычно и рассматривается) $\alpha \approx f_{PBH}$

для
$$f_{PBH} = 0.01$$
 и $M = 10^9\,M_{\odot}$

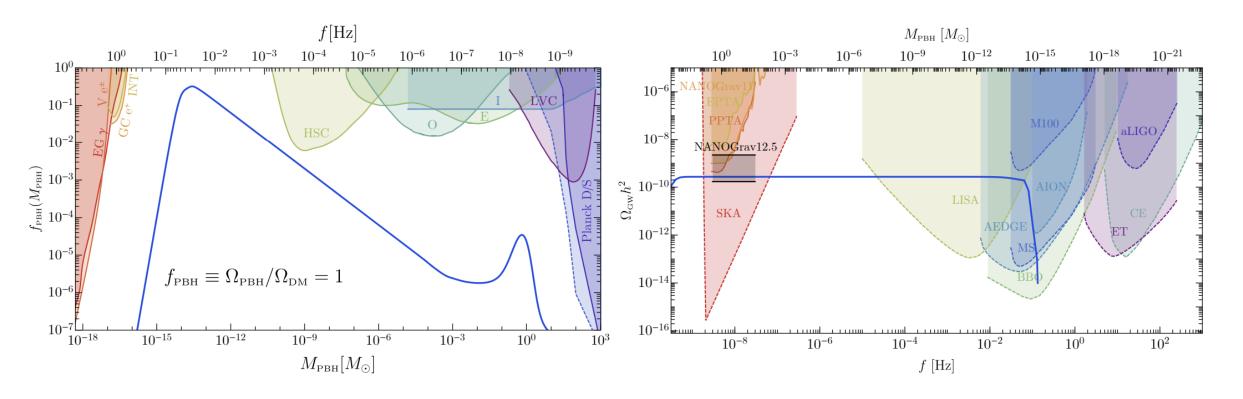

$$\Omega_{gw} \sim 6.5 imes 10^{-9} \left(rac{f}{
m nHz}
ight)^{2/3}$$
 Это превышает ограничения!

Однако из "первых принципов" можно ожидать, что lpha pprox 1 во всяком случае пару порядков сверху f накинуть можно...

Do pulsar timing arrays observe merging primordial black holes? 2306.17836

Do pulsar timing arrays observe merging primordial black holes? 2306.17836

(?) Источник ГВ фона

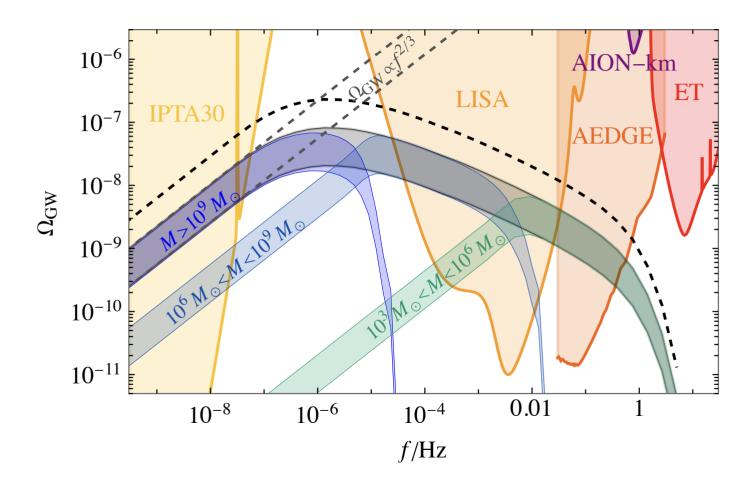

1. Черные дыры в сливающихся галактиках

2. Формирующиеся ПЧД
$$\Omega_{
m GW}^{
m induced} h^2 \sim 10^{-6} \mathcal{P}_{\mathcal{R}}^2 \ M_H \simeq 33 \left(\frac{10^{-9} \, {
m Hz}}{f} \right)^2 M_{\odot}$$

Для того, чтобы количество формирующихся ПЧД не противоречило ограничениям $P_R \sim 0.01$

3. что-то еще

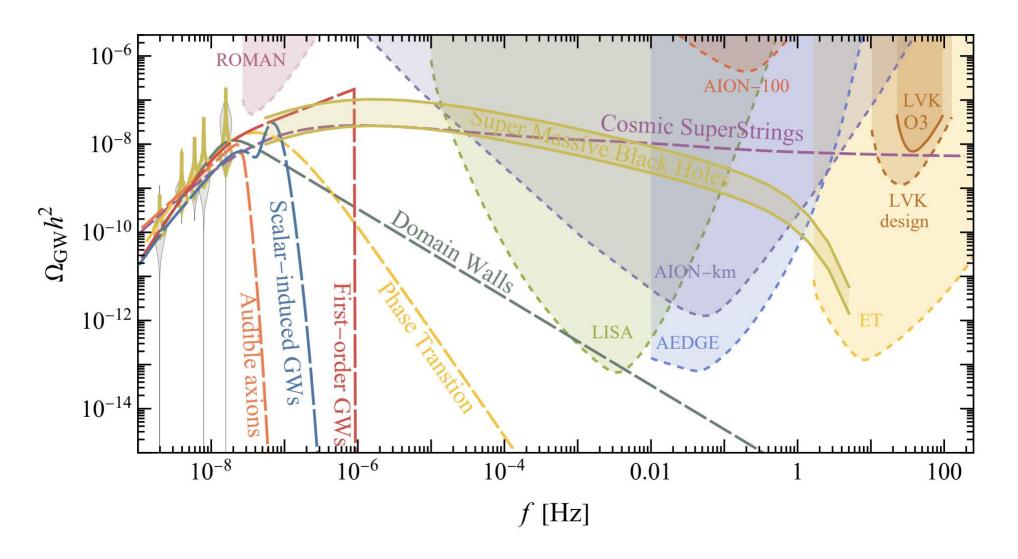
NANOGrav Hints to Primordial Black Holes as Dark Matter (De Luca, Franciolini, Riotto 2009.08268)


Подразумевается «дважды плоский» спектр мощности, усиленный на малых масштабах

$$\mathcal{P}_{\zeta}(k) \approx A_{\zeta} \Theta(k_s - k) \Theta(k - k_l), \quad A_{\zeta} \simeq 5.8 \cdot 10^{-3}$$

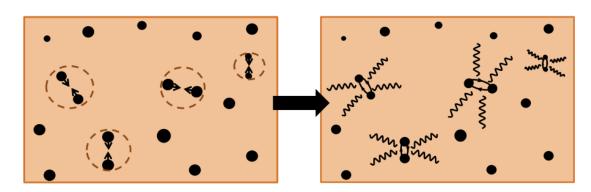
Сверхмассивные ЧД при слиянии галактик (2301.13854)

$$\frac{\mathrm{d}R_{\mathrm{BH}}}{\mathrm{d}m_{1}\mathrm{d}m_{2}} \approx p_{\mathrm{BH}} \frac{\mathrm{d}M_{1}}{\mathrm{d}m_{1}} \frac{\mathrm{d}M_{2}}{\mathrm{d}m_{2}} \frac{\mathrm{d}R_{h}}{\mathrm{d}M_{1}\mathrm{d}M_{2}} \,,$$


where $p_{\rm BH} \equiv p_{\rm occ}(m_1)p_{\rm occ}(m_2)p_{\rm merg}$ denotes the probability that the halo merger leads to a merger of the central SMBHs.

$$p_{\rm BH} = 0.17^{+0.18}_{-0.08}$$

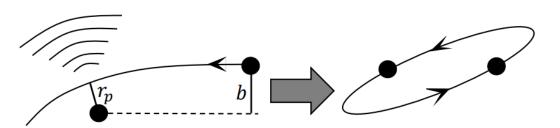
С СЧД есть проблема последнего парсека


What is the source of the PTA GW signal? (2308.08546)

Двойные ПЧД

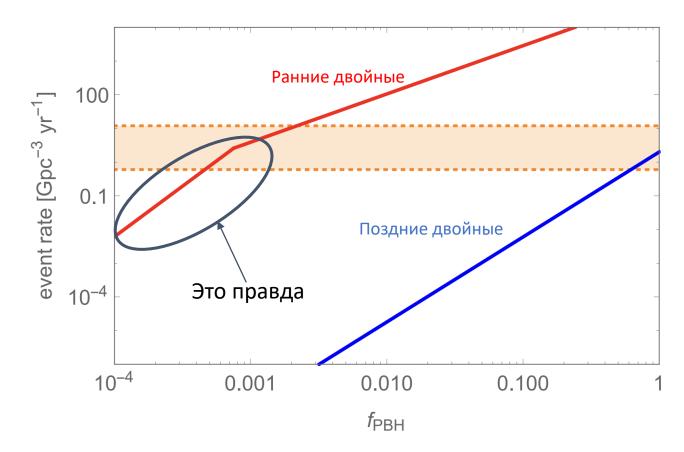
Существует два основных механизма формирования двойных

1) Отцепление от Хаббловского потока в ранней Вселенной - ранние двойные. Sasaki et al., Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914, 1603.08338; Nakamura et al., astro-ph/9708060



Распределение по параметрам ранних двойных

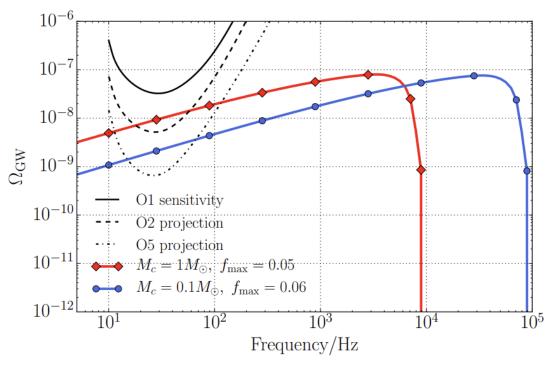
$$dP = \frac{3}{2} \left(\frac{f}{\overline{x}}\right)^{3/2} \frac{\sqrt{a}}{j^2} dadj$$


$$j = \sqrt{1 - e^2}$$

$$j \ll 1$$

2) Динамический канал в современных структурах - поздние двойные. Bird et al., Did LIGO detect dark matter? 1603.00464. Такие двойные сливаются мгновенно

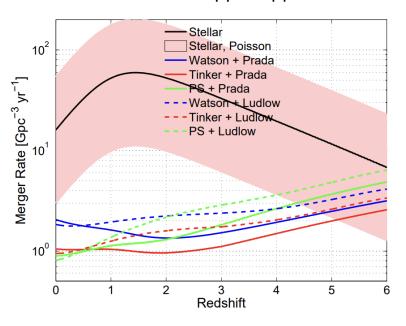
LIGO-Virgo-KAGRA ограничения на темп слияний

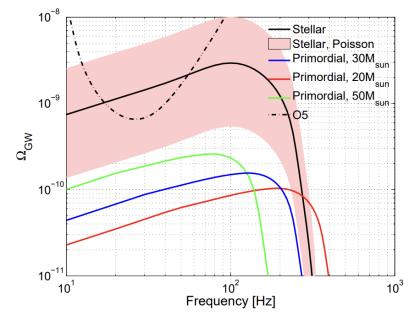

Sasaki et al., Primordial Black Holes - Perspectives in Gravitational Wave Astronomy, 1801.05235

Красная линия справедлива, если с двойными ничего не случилось с момента их формирования до слияния. А это может быть не так, двойные могут разрушить или с возмутиться

Также считается, что вклад поздних двойных пренебрежимо мал. Будет показано, что это тоже не так

LVK не видит ГВ фон


Но это привязано к современному темпу слияний



1610.08725 ранние двойные

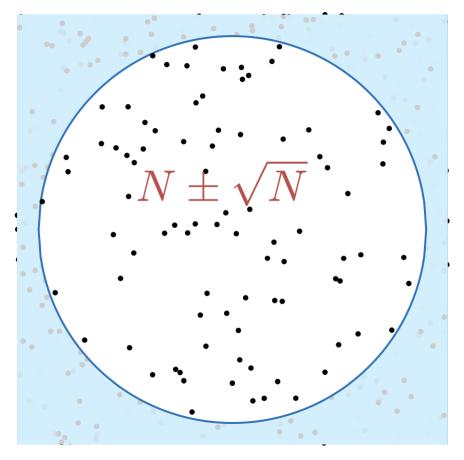
Статьи старые, сейчас ограничение на ГВ фон по данным ОЗ на порядок сильнее. Но смысл тот же

1608.06699 поздние двойные

Пуассоновская кластеризация ПЧД

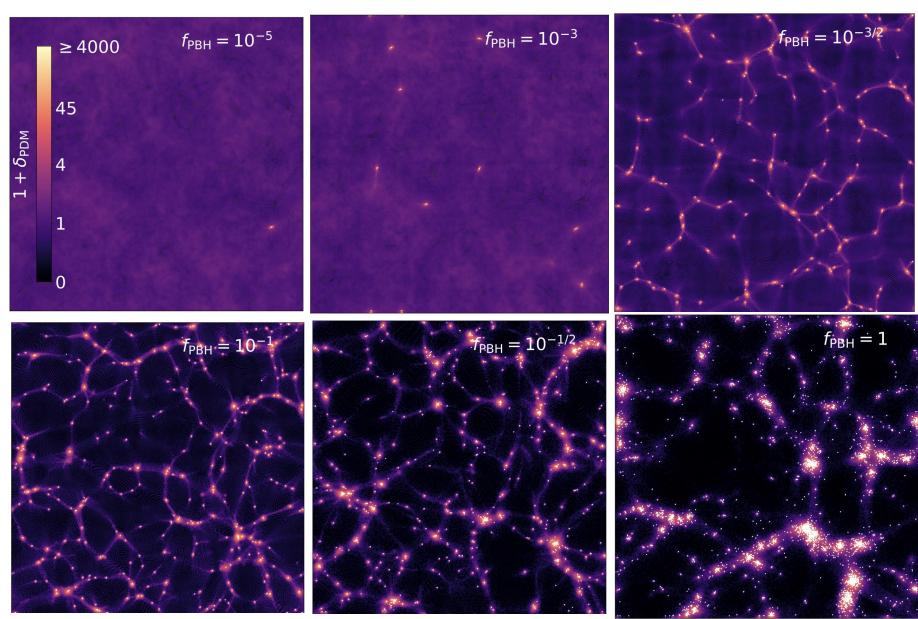
ПЧД за счет их случайного распределения создают флуктуации плотности. На малых масштабах эти флуктуации доминируют над инфляционными

 $\delta \sim f_{PBH}/\sqrt{N}$

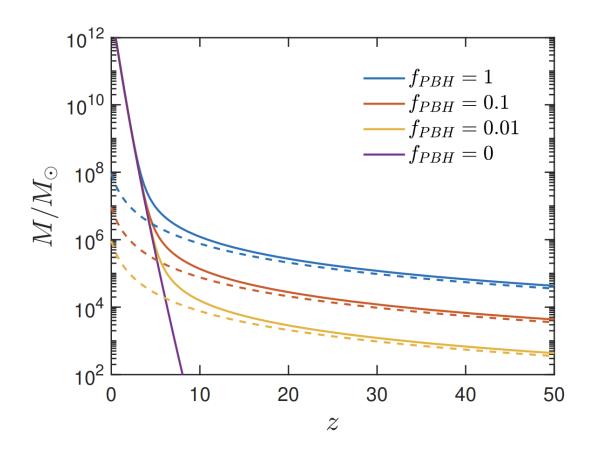

Меняется спектр мощности (Afshordi et al. 2003, astro-ph/0302035)

$$P_{PBH} = T_{iso}^2 \frac{m f_{PBH}}{\Omega_{DM} \rho_c} = \frac{9}{4} (1 + z_{eq})^2 \frac{m f_{PBH}}{\Omega_{DM} \rho_c}$$

Дисперсия флуктуаций


$$\sigma_M^2(R,z) = D^2(z) \int \frac{dk}{2\pi^2} k^2 P(k) W^2(kR)$$

$$\sigma_M^2(M) = rac{9\,mf_{PBH}}{4\,M} \left(rac{1+z_{eq}}{1+z}
ight)^2$$
 Если учитывать только ПЧД, это большие z



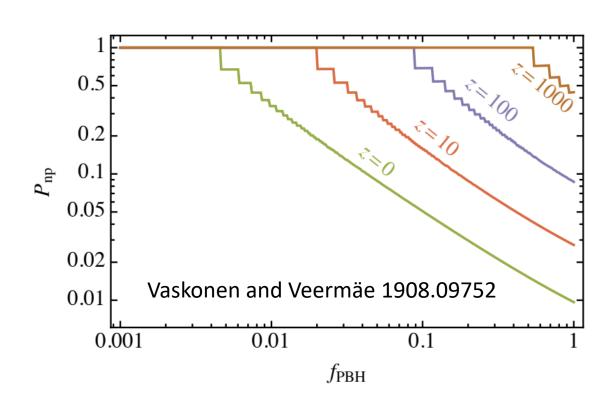
Early Structure Formation in APBH Cosmologies 1907.08129

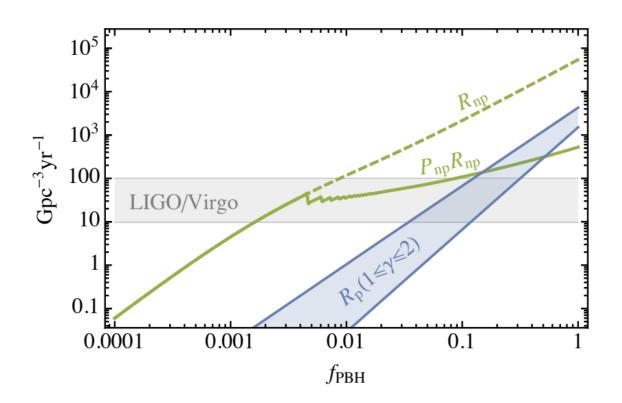
Структуры при z = 100. К меньшим z очень затратно считать

Гало характерной массы из ПЧД + ТМ

Определяется как
$$\sigma(M_{
m ch})=\delta_c=1.69$$

Пунктирные линии даются выражением

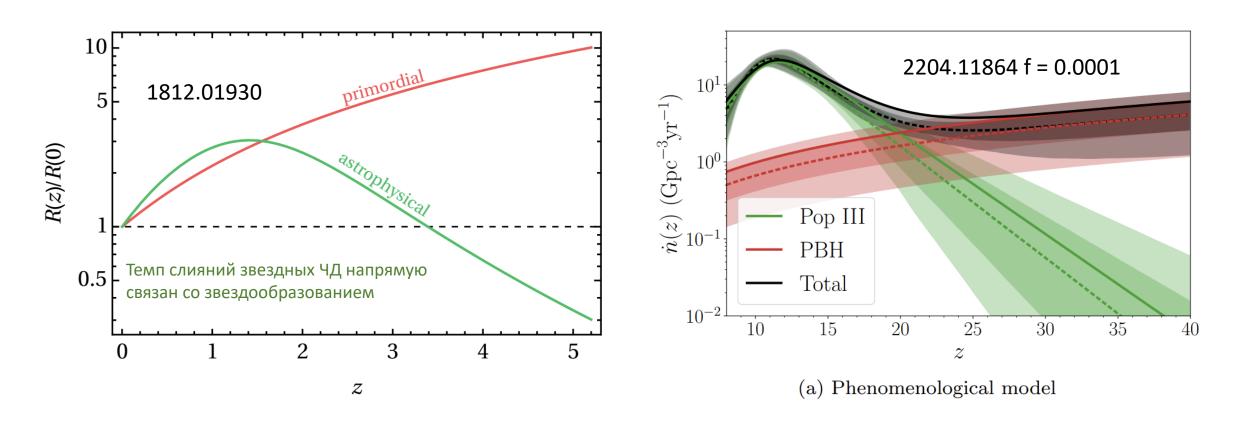

$$M_{\rm ch} = \frac{9 \, m f_{\rm PBH}}{4 \, \delta_c^2} \left(\frac{1 + z_{\rm eq}}{1 + z} \right)^2$$


Хотелось бы, чтобы в таких структурах ранние двойные разрушались при взаимодействиями с другими ПЧД, но не все так просто. Темп таких взаимодействий очень слаб (Yacine Ali-Haïmoud et al. 2017, 1709.06576)

Эффекты кластеризации ПЧД

Если ранние двойные оказываются в кластере, то они сливаются. Сливаться будут невозмущенные двойные

$$\mathcal{R} = \mathcal{R}_0 P_{\rm np}$$



Механизм возмущения – двойная рассеивается на одиночной -> ее угловой момент растет (Jedamzik 2006.11172) $3 c^5 a^4 i^7$

 $t_{\rm mer} = \frac{3 c^5 a^4 j^7}{170 G^3 m^3}, \quad j \ll$

Ранние двойные

Будущие детекторы ГВ смогут видеть слияния вплоть до z = 100. У LVK будущий предел z = 2

ПЧД сливаются при всех красных смещениях, а звезды нет. Слияний звездных ЧД не ожидается при z > 30 (Koushiappas and Loeb 2017). Если доля ПЧД очень маленькая, то слияния ЧД от звезд Рор III будет преобладать, но это все модели, такого может и не быть

Заключение

- Существующие результаты по слияниям ПЧД в самом классическом сценарии справедливы для f < 0.001. При больших долях ПЧД в ТМ ожидаются "нелинейные" эффекты
- Не изучена эволюция кластеров ПЧД, возникающих из Пуассоновского шума при f > 0.01. Также практически не рассмотрены модели, предсказывающие изначальную кластеризацию ПЧД
- Наблюдение слияний ЧД при больших z > 10 будет указывать на ПЧД, двойные звездные ЧД сложно делать при больших z. Однако временная эволюция темпа слияний не учитывает кластеризацию. А именно ее также можно будет проверить в будущих наблюдениях
- Классические результаты по формированию и эволюции двойных не распространяются на сверхмассивные ПЧД. Кроме того, возможность формирования двойных массивных ПЧД после РД-МД перехода не рассмотрена. Почти из первых принципов можно показать, что массивных двойных будет много