

Исследование вариаций космических лучей по данным наземных установок

Введение

Общее описание вариаций скорости счета наземного детектора:

- Солнечно-земные связи
- Вариации первичного спектра
- Форбуш-эффекты
- 27-дневные вариации
- Анизотропия

Атмосферные вариации, связанные с взаимодействием КЛ с веществом атмосферы

- Грозы
- Ионизация воздух
- Формирование нижней ионосферы
- Генерация космогенных • нуклидов
- Атмосферные химические процессы

Вариации магнитосферного происхождения, обусловленные состоянием земной магнитосферы

- Радиационные пояса
- Электрические токи в магнитосфере
- Процессы в ионосфере

 $+\varepsilon$

Dorman, L. (2013). Cosmic rays in the Earth's atmosphere and underground. Springer Science & Business Media

Belov, A., et al. (2018) The global survey method applied to ground-level cosmic ray measurements. Solar Physics. V. 293 P. 1-23.

Детекторы для исследования вариаций КЛ

Адронная компонента

Типовой нейтронный монитор 24NM64 Simpson, J. A. (2000). Space Science Reviews, 93(1/2), 11–32.

https://www.nmdb.eu/station/

Мюонный телескоп Нагоя

Многонаправленный ^{веодгарыс and detector's} мюонный телескоп Кувейт Mendonça, R.

Мюонная компонента

The Global Muon Detector Network: Sao Martinho da Serra (SMS), Kuwait (KWT), Nagoya (NGY), and Hobart (HBT) detectors

Mendonça, R. R. S. et al. (2019). Journal of Geophysical Research: Space Physics, 124, 9791–9813

Детекторы для исследования вариаций КЛ

Мюонная компонента

Мюонный годоскоп УРАГАН Barbashina, N. S. et al. (2008). Instruments and Experimental Techniques, 51(2), 180–186

Якутские скрещенные сцинтилляционные мюонные телескопы Стародубцев С. А. Флуктуации интенсивности космических лучей в 11летнем цикле солнечной активности : дис. – Ин-т солнечно-земной физики СО РАН, 2014.

Мюонный годоскоп GRAPES-3 Hayashi, Y. et al (2005). Nuclear Instruments and Methods in Physics Research Section A, 545(3), 643-657.

0 mwe

7 mwe

40 mwe

20 mwe

Понятие функций связи

Интенсивность потока вторичных частиц на поверхности Земли:

$$I(R_{c}(t), h_{0}(t), t) = \int_{R_{c}(t)}^{\infty} J(R, t) \cdot m(R, h(t), g(t), T(h, t), E(h, t)) dR$$

Проварьировав по параметрам, зависящим от времени, получим:

$$\begin{split} \delta I(R_c(t),h_0(t),t) = & \int_{R_{c0}}^{\infty} J_0(R) \cdot \delta m \big(R,h_0(t),g(t),T(h,t),E(h,t)\big) dR - \delta R_c(t) \cdot J_0(R_{c0}) \cdot m_0 \big(R_{c0},h_0,g_0,T_0(h),E_0(h)\big) + \\ & \text{Вариации атмосферного происхождения Вариации геомагнитного происхождения } \\ & + \int_{R_{c0}}^{\infty} \delta J(R,t) \cdot m_0 \big(R_{c0},h_0,g_0,T_0(h),E_0(h)\big) dR \\ & \text{Вариации первичного излучения} \end{split}$$

В относительных единицах, после эквивалентных преобразований:

$$\frac{\delta I(R_c(t), h_0(t), t)}{I_0} = \int_{R_{c0}}^{\infty} \frac{\delta m(R, h_0(t), g(t), T(h, t), E(h, t))}{m_0} \cdot \frac{J_0(R) \cdot m_0}{I_0} dR - \delta R_c(t) \cdot \frac{J_0(R_{c0}) \cdot m_0}{I_0} + \int_{R_{c0}}^{\infty} \frac{\delta J(R, t)}{J_0(R)} \cdot \frac{J_0(R) \cdot m_0}{I_0} dR$$

Тогда относительная вариация интенсивности потока мюонов:

$$\frac{\delta I(R_c(t), h_0(t), t)}{I_0} = \int_{R_{c0}}^{\infty} \frac{\delta m(R, h_0(t), g(t), T(h, t), E(h, t))}{m_0} \cdot W(R_{c0}, R) \, dR - \delta R_c(t) \cdot W(R_{c0}, R_{c0}) + \int_{R_{c0}}^{\infty} \frac{\delta J(R, t)}{J_0(R)} \cdot W(R_{c0}, R) \, dR$$

В свою очередь, **W(R_{c0}, R)** - функция связи между вторичными частицами и первичными космическими лучами

Dorman, L. (2013). *Cosmic rays in the Earth's atmosphere and underground*. Springer Science & Business Media.

Методы расчета функций связи

Параметризация широтных наблюдений

 $N(R) = N(0) \left(1 - \exp\left(-\alpha P_{c}^{-\kappa+1}\right)\right)$

 $W(P_{\rm c}) = \frac{-\mathrm{d}N}{N(0) \,\mathrm{d}P_{\rm c}} = \alpha(\kappa - 1) \exp(-\alpha P_{\rm c}^{-\kappa+1}) P_{\rm c}^{-\kappa}$

Функция Дормана

Clem, J. M. (2000). Neutron monitor response functions. Space Science Reviews, 93(1/2), 335–359

Монте-Карло моделирование

- CORSIKA (FLUKA) Clem, J. M. (2000). Neutron monitor response functions. Space Science Reviews, 93(1/2), 335–359
- CORSIKA (FLUKA + QGSJET) Yakovleva, E. I et al (2009). Coupling functions for muon hodoscopes. Bulletin of the Russian Academy of Sciences: Physics, 73, 357-360.
- GEANT4 PLANETOCOSMICS Mishev, A. L. et al.(2013). Neutron monitor yield function: New improved computations. Journal of Geophysical Research: Space Physics, 118(6), 2783-2788.

Функции связи для исследований модуляционных явлений

20

Форбуш-эффекты

Метод относительных вариаций Livada, M. et al (2018). Galactic cosmic ray spectral index: the case of Forbush decreases of March 2012. *Astrophysics and Space Science*, *3*63, 1-9.

Анализ изотропных вариаций по данным метода глобальной съемки + корреляционные связи с межпланетной средой

Klyueva, A. I. et al (2017). Specific features of the rigidity spectrum of Forbush effects. Geomagnetism and Aeronomy, 57(2), 177–189.

Функции связи для исследований модуляционных явлений

27-дневные вариации

Gil, A., & Alania, M. V. (2016). Energy spectrum of the recurrent variation of galactic cosmic rays during the solar minimum of cycles 23/24. *solar physics*, *291*(6), 1877-1886.

Modzelewska, R., & Alania, M. (2014). 27-day Variation of the Three Dimensional Solar Anisotropy of Galactic Cosmic Ray: 1965-2013. 40th COSPAR Scientific Assembly, 40, D1-3.

Метод глобальной съемки

Распределение интенсивности космических лучей по небесной сфере *I*(*θ*,*φ*) может быть представлено в виде разложения по сферическим гармоникам:

 $I(\theta,\varphi) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} (a_n^m \cos m\varphi + b_n^m \sin m\varphi) P_n^m(\sin \theta)$

где P_n^m – присоединенные функции Лежандра, θ и φ – широта и долгота соответственно. В векторном виде:

 $I(\theta,\varphi) = AR$

где $A = \{a_n^m, b_n^m\}$ – анизотропия, $R = \{P_n^m(\sin\theta)\cos m\varphi, P_n^m(\sin\theta)\sin m\varphi\}$ – приемный вектор. Метод приемных векторов объединяет:

- Метод функций связи (Dorman, 2004)
- Метод траекторных расчетов (Dorman, 2009)
- Метод сферического анализа (Крымский, 1981)

 наземный детектор космических лучей; 2 – траектория частицы;
 асимптотическое направление (Dorman, 2009)

Расчет приемных векторов

Расчет компонент приемных векторов осуществлялся согласно выражению (Belov et al, 2018) :

$$\begin{split} V_k &= \frac{\int_{R_c}^{\infty} \int_0^{2\pi} \int_0^{\frac{\pi}{2}} F_k \Big(\Phi(\theta, \varphi, R), \Psi(\theta, \varphi, R) \Big) \cdot f_n(R, \beta) \cdot J_0(R) \cdot m_0(R_c, \theta) \cdot S(\theta) \cdot \sin \theta \, d\theta \, d\varphi \, dR}{\int_{R_c}^{\infty} \int_0^{2\pi} \int_0^{\frac{\pi}{2}} J_0(R) \cdot m_0(R_c, \theta) \cdot S(\theta) \cdot \sin \theta \, d\theta \, d\varphi \, dR} \\ f_n(R, \beta) &\quad - \text{спектральная функция n-ой гармоники. Для первой гармоники $f_1(R, \beta) = \begin{cases} \left(\frac{R}{10}\right)^{\beta}, & R \leq R_u, \\ 0, & R > R_u \end{cases}, \quad R_u = 100 \, \Gamma B, \quad \beta = 0 \\ 0, & R > R_u \end{cases}$

$$F_k(\Phi(\theta, \varphi, R), \Psi(\theta, \varphi, R)) = \begin{cases} P_0^0(\sin \Phi) = 1, & k = 0 \iff \text{нулевая гармоника, изотропная составляющая} \\ P_1^1(\sin \Phi) = \sin \Phi, & k = 1 \iff \text{вклад первой гармоники в изотропную составляющая} \\ P_1^1(\sin \Phi) \cos \Psi = \cos \Phi \cos \Psi, & k = 2 \iff \text{радиальная компонента первой гармоники} \\ P_1^1(\sin \Phi) \sin \Psi = \cos \Phi \sin \Psi, \quad k = 3 \iff \text{азимутальная компонента первой гармоники} \end{cases}$$

$$\begin{cases} C_{xi} = C_{11} \cos(\phi_s + \phi_{11}), \\ C_{yi} = C_{11} \sin(\phi_s + \phi_{11}), \\ C_{zi} = C_{10}, \end{cases}$$$$

Есть также ряд других методов, отличающихся видом спектральной функции, условием нормировки Fujimoto, K., Nagashima, K., & Morishita, I. (1990). Cosmic-ray sidereal daily variation of galactic origin to be observed with existing underground muon telescopes. Planetary and Space Science, 38(10), 1267–1293

Kovalev, I. I., Olemskoy, S. V., & Sdobnov, V. E. (2022). A proposal to extend the spectrographic global survey method. Journal of Atmospheric and Solar-Terrestrial Physics, 235, 105887

Анизотропия космических лучей

а) Среднегодовые значения модуляционных параметров, приведённых для 60 ГВ

б) Корреляции со среднегодовым числом солнеяных пятен.

в) Модуляционные параметры, приведённые к 10 ГВ, из наблюдений нейтронного монитора в Thule, McMurdo и Deep River Munakata, K. et al (2002). Solar cycle variations of modulation parameters of galactic cosmic-rays in the heliosphere. *Advances in Space Research*, 29(10), 1527-1532.

Гелиосферные возмущения

Абунина М. А. и др. Метод кольца станций в исследовании вариаций космических лучей: 1. Общее описание //Геомагнетизм и аэрономия. – 2020. – Т. 60. – №. 1. – С. 41-48.

Гелиосферные возмущения

3-6 November 2003

Поведение плотности КЛ (АО) и векторной анизотропии (Аху) в ФЭ от солнечных источников с долготой:

(a)E90-E45;

Ay,5%

Ax 5%

to the Sun

- (b) E44-E16;
- E15-W15; (C)
- W16-W45; (d)
- W46-W90. (e)

Анализ угловых распределений

GMDN (SMS), кривой показана линия питч-угла, измеренного от направленного к Солнцу ММП и расчетного направления космических лучей медианной энергии в каждом пикселе

GRAPES-III, 169 направлений

Анализ угловых распределений

34

Спасибо за внимание!