МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ» (НИЯУ МИФИ)

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА №40 «ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ»

УДК 539.1.05

ОТЧЁТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ ИЗМЕРЕНИЕ СВЕТОВЫХОДА СЦИНТИЛЛЯТОРА GAGG(Ce) ПО ОТНОШЕНИЮ К CSI(Tl)

Студент	А. А. Козлов
Научный руководитель,	

старший преподаватель _____ Ф. А. Дубинин

Москва 2024

СОДЕРЖАНИЕ

Bı	ведение		2
1	Teo	ретические сведения	3
	1.1	Сцинтиллятор CsI(Tl)	3
	1.2	Сцинтиллятор GAGG(Ce)	4
2	Опј	ределение относительного световыхода GAGG(Ce)	6
	2.1	Используемое оборудование и установка	6
	2.2	Изучение линейности SiPM с сцинтилляционным кристаллом	
		CsI(Tl)	7
	2.3	Расчёт коэффициента согласования для фотопрёмника и сцин-	
		тиллятора	8
	2.4	Анализ полученных результатов	9
3	Зак	лючение	11

ВВЕДЕНИЕ

В современных экспериментах в области физики элементарных частиц важным рабочим инструментом являются сцинтилляционные кристаллы, позволяющие регистрировать ионизирующее излучение при помощи фотоэлектронных умножителей (ФЭУ). Изучение различных источников излучения предполагает использование множества разновидностей органических и неорганических сцинтилляторов для наиболее точной регистрации событий, возникающих при прохождении через сцинтиллятор частиц с определённой энергией.

Одним из широко используемых неорганических сцинтилляторов, используемых для работы с радиоактивными источниками, является кристалл CsI(Tl), характеристики которого подвергались многократному измерению и изучению. Однако в последние несколько лет активно начал применяться сцинтиллятор GAGG(Ce) [1], имеющий ряд преимуществ в сравнении с остальными неорганическими сцинтилляторами, что делает его интересным материалом для использования в качестве рабочего вещества сцинтилляционных детекторов.

В данной работе исследутеся световыход для сцинтилляционных детекторов на основе кристаллов CsI(Tl) и GAGG при работе в связке с фотодетектором SiPM, определяется относительный световыход сцинтилляционного кристалла GAGG относительно кристалла CsI(Tl).

1. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

1.1. СЦИНТИЛЛЯТОР CSI(TL)

Кристаллы йодида цезия или CsI(Tl), активированные таллием, являются одним из самых ярких сцинтилляторов. Максимум широкого излучения расположен на длине волны 550 нм, что обеспечивает хорошее считывание с фотодиода. CsI(Tl) гигроскопичен с пластическими механическими свойствами [2].

Характеристики сцинтиллятора	CsI(Tl)
Плотность, Γ/cm^3	4.51
Световыход, ф/МэВ	52000
Длина волны с максимумом излучения, нм	560
Время высвечивания, нс	1000
Гигроскопичность	+

Таблица 1.1 — Характеристики сцинтиллятора CsI(Tl)

Одна их ключевых проблем кристаллов CsI(Tl) - их гигроскопичность. Со временем световыход кристалла может измениться под действием внешней среды, что приведёт к ухудшению качества получаемых данных.

Рисунок 1.1 — Спектр высвечивания кристаллов семейства CsI

1.2. СЦИНТИЛЛЯТОР GAGG(CE)

Сцинтиллятор GAGG(Ce) качественно выделяется на фоне прочих сцинтилляционных кристаллов высоким световыходом, большим энергетическим разрешением, а также сравнительно малым временем высвечивания. Также к преимуществам GAGG(Ce) можно отнести негигроскопичность кристалла и отсутствие собственного радиоактивного фона [3].

Характеристики сцинтиллятора	GAGG(Ce)
Плотность, г/см 3	6.63
Световыход, ф/МэВ	38000
Длина волны с максимумом излучения, нм	530
Время высвечивания, нс	92
Гигроскопичность	-

Таблица 1.2 — Характеристики сцинтиллятора GAGG(Ce)

Рисунок 1.2 — Спектр высвечивания сцинтиллятора GAGG(Ce)

Главным же недостатком GAGG(Ce) является его цена в сравнении с конкурентами, обусловленная сложностью выращивания кристалла в лабораторных условиях.

2. ОПРЕДЕЛЕНИЕ ОТНОСИТЕЛЬНОГО СВЕТОВЫХОДА GAGG(CE)

2.1. ИСПОЛЬЗУЕМОЕ ОБОРУДОВАНИЕ И УСТАНОВКА

В ходе исследования относительного световыхода сцинтиллятора GAGG(Ce) использовался кристалл размерами 3x3x12 мм с светоотражающим покрытием на боковых сторонах для улучшения световыхода.

Размеры сцинтилляционного кристалла CsI(Tl) - 3х3х15 мм

В качестве фотоприёмника использовался кремниевый фотоумножитель (SiPM) компании «Onsemi» из линейки C-series, работавший в режме перенапряжения на 2.5В. Зависимость эффективности регистрации фотонов SiPM данной серии представлена ниже.

Рисунок 2.1 — Зависимость эффективности регистрации фотонов для SiPM серии MicroFC-30035-SMT

В качестве приёмника сигнала, поступающего с SiPM, использовался осциллограф Teledyne LeCroy 620Zi.

2.2. ИЗУЧЕНИЕ ЛИНЕЙНОСТИ SIPM С СЦИНТИЛЛЯЦИОННЫМ КРИСТАЛЛОМ CSI(TL)

Первой задачей для определение относительного световыхода сцинтиллятора GAGG(Ce) являлась проверка фотодетектора на линейность выходного сигнала относительно известных энергий излучения радиоактивных источников в связке с конкретным сцинтиллятором.Исследование данного аспекта работы фотоприёмника необходимо для правильного вычисления световыхода сцинтилляционных кристаллов. С этой целью были собраны спектры излучений для таких источников, как Na-22, Co-60, Cs-137, Am-241 при перенапряжении SiPM в 2.5 В.

Рисунок 2.2 — График зависимости количества фотоэлектронов от энергии излучения радиоактивного источника для SiPM MicroFC-30035-SMT

На полученном графике видно, что наиболее близкая к ожидаемой линейной зависимости аппроксимация получается при проведении прямой через точки, соответствующие характерному спектру Am-241, 26.3 КэВ и 59.5 КэВ соответственно. Исходя из этого факта, наиболее подходящим набором данных для вычисления световыхода сцинтиллятора CsI(Tl) будет являться спектр Am-241.

2.3. РАСЧЁТ КОЭФФИЦИЕНТА СОГЛАСОВАНИЯ ДЛЯ ФОТОПРЁМНИКА И СЦИНТИЛЛЯТОРА

Немаловажным аспектом в определении световыхода сцинтиллятора является согласованность спектра высвечивания материала кристалла и эффективности фотонной регистрации у фотоприёмника. Для учёта этой характеристики вводится коэффициент согласования для пары «сцинтиллятор-фотоприёмник», вычисляющийся по следующей формуле [4]:

$$K = \frac{\int F(\lambda) * \epsilon(\lambda) d\lambda}{\int F(\lambda) d\lambda}$$
(2.1)

 $\mathrm{F}(\lambda)$ - спектр высвечивания сцинтиллятора

 $\epsilon(\lambda)$ - спектральная характеристика сцинтиллятора

Необходимость использования данного коэффициента обуславливается неодинаковым диапазоном спектров высвечивания сцинтилляционных кристаллов, а также различным положением пиков высвечивания относительно графика эффективности регистрации фотонов кремниевым фотоумножителем.

Для сцинтиллятора на основе кристалла CsI(Tl) было получено следующее значение коэффициента согласования:

$$K_{CsI(Tl)} = 0.152$$

Для сцинтиллятора на основе кристалла GAGG(Ce) было получено значение коэффициента согласования:

$$K_{GAGG} = 0.150$$

Используя известные значения световыхода сцинтилляционных кристаллов с учётом их корректировки на послеимпульсы (afterpulsing) и кросстоки [5], получим следующие значения истинного световыхода:

$$LY_{CsI(Tl)} = 46882 \frac{photons}{MeV}$$
$$LY_{GAGG(Ce)} = 19000 \frac{photons}{MeV}$$

Тогда относительный световыход сцинтиллятора GAGG(Ce) относительно сцинтиллятора CsI(Tl) будет равен

$$\frac{LY_{GAGG(Ce)}}{LY_{CsI(Tl)}} = 0.405 \tag{2.2}$$

2.4. АНАЛИЗ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Сравним полученные значения световыхода для сцинтилляторов CsI(Tl) и GAGG(Ce) с заявленными производителем значениями:

	Расчётное значение	Заявленное значение	$\epsilon, \%$
CsI(Tl)	46882	52000	9.84
GAGG(Ce)	19000	38000	50

Таблица 2.1 — Сравнение расчётного световыхода с заявленным производителем для кристаллов CsI(Tl) и GAGG(Ce)

Таким образом, мы можем наблюдать удовлетворительную точность в измерении световыхода у сцинтилляционного кристалла CsI(Tl) и значительную погрешность при измерении световыхода кристалла GAGG(Ce).

Результаты, полученные для CsI(Tl), позволяют сделать вывод о применимости описанной в работе методики для определения световыхода данного сцинтиллятора. Наблюдаемое расхождение с заявленным производителем значением световыхода может быть обусловлено возникновением дефектов в кристалле из-за его гигроскопичности.

Несовпадение результатов эксперимента, полученных для GAGG(Ce), с ожидаемыми теоретическими значениями требует дополнительного теоретического объяснения. Одной из гипотез, объясняющих наблюдаемые различия, является гипотеза о значительном внутреннем поглощении фотонов сцинтилляционным кристаллом. В качестве инструмента опровержения или доказательства данной гипотезы может быть использовано компьютерное моделирование.

3. ЗАКЛЮЧЕНИЕ

В данной работе проводилось исследование относительного световыхода кристалла GAGG(Ce) относительно кристалла CsI(Tl).

Для наиболее точного определения световыхода CsI(Tl) в связке с кремниевым фотоумножителем MicroFC-30035-SMT была проверена линейность зависимости фотоэлектронов от энергии излучения. По результатам измерений было принято решение определять световыход сцинтиллятора с помощью спектра Am-241.

Были найдены коэффициенты согласования для сцинтилляторов GAGG(Ce) и CsI(Tl) с кремниевым фотоумножителем MicroFC-30035-SMT (2.1). Были получены значения световыхода для каждого из кристаллов, посчитан относительный световыход кристалла GAGG(Ce) относительно кристалла CsI(Tl):

$$\frac{LY_{GAGG(Ce)}}{LY_{CsI(Tl)}} = 0.405$$

Полученные значения световыхода для сцинтиллятора GAGG(Ce) значительно отличается от заявленного производителем значения, что требует дополнительного объяснения. Причина расхождений может находиться в физических свойствах кристалла GAGG(Ce) [6].

Дальнейшее развитие данного метода вычисления световыхода сцинтиллятора GAGG(Ce) заключается в разработке модели сцинтиляционного детектора в специализированной среде для моделирования, что позволит понять механизм внутренних потерь фотоэлектронов в корпусе сцинтиллятора. Понимание данного механизма даст возможность учесть все необходимые факторы для точного определения световыхода кристалла GAGG(Ce).

СПИСОК ЛИТЕРАТУРЫ

- Yao Zhu, Sen Qian, Zhigang Wang, Hao Guo, Lishuang Ma, Zhile Wang, Qi Wu, Scintillation properties of GAGG:Ce ceramic and single crystal, Optical Materials, Volume 105, 2020,
- [2] https://www.epic-crystal.com/scintillation-crystals/csi-crystal.html
- [3] $https: //newpiezo.com/knowledge_base/crystals/gagg ce/$
- [4] Шендрик Р. Ю. Введение в физику высоких энергий. Введение в физику сцинтиляторов. т. 105. Мир, 2013.
- [5] SensL. Introduction to SiPM. -02/2017.
- [6] M. Yoneyama and J. Kataoka and M. Arimoto and T. Masuda and M. Yoshino and K. Kamada and A. Yoshikawa and H. Sato and Y. Usuki Evaluation of GAGG:Ce scintillators for future space applications. Journal of Instrumentation, Volume 13, February 2018