### ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

# ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ ДЕЛЕНИЯ ЯДЕР И ЯДЕРНЫХ РЕАКЦИЙ

научный руководитель

доцент, доктор физикоматематических наук

студент

Барабанов Алексей Леонидович

Мико Сотер

Москва 2024

# Содержание

| 1        | Введение                                                                     | <b>2</b> |
|----------|------------------------------------------------------------------------------|----------|
|          | 1.1 Определения и аббревиатуры                                               | 2        |
|          | 1.2 Различие между процессом первого шанса и процессом с несколькими шансами | 2        |
| <b>2</b> | Модель BROSA (MM-RNRM)                                                       | 3        |
|          | 2.1 Обобщенные формы Лоуренса                                                | 3        |
|          | 2.2 Поверхностная энергия ядра                                               | 7        |
|          | 2.3 Энергия кулоновского отталкивания                                        | 8        |
| 3        | Ядерная деформация                                                           | 8        |
| 4        | Заключение                                                                   | 9        |

### 1 Введение

#### 1.1 Определения и аббревиатуры

Реакция ядерного деления - Процесс расщепления атомных ядер на два (редко на три) ядра с одинаковыми массами – осколками деления. В результате реакций могут образовываться и другие продукты: легкие ядра (в основном альфа-частицы), нейтроны и гаммакванты. Деление может быть самопроизвольным и вынужденным (в результате взаимодействия с другими частицами, особенно с нейтронами). Деление тяжелых ядер — экзоэнергетический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения.

Барьер деления - Энергия активации, необходимая для того, чтобы ядро атома подверглось делению.

**MM-RNRM**: Multi-Mode Random Neck-Rupture Model **ADS**: Accelerator Driven Systems

При делении при промежуточных энергиях возникают два фактора, которые усложняют описание по сравнению с низкоэнергетическим делением: деление с несколькими шансами и изменяющиеся характеристики деления при высокой энергии.

### 1.2 Различие между процессом первого шанса и процессом с несколькими шансами



Рис. 1: Схематический рисунок, иллюстрирующий процесс деления [1]

- Если энергия возбуждения ядра мала, и оно делится на два осколка, то это деление первого шанса. Образуются два возбужденных фрагмента F1, F2. Осколки теряют свою энергию, испуская нейтроны и гамма-кванты. В конце концов остаются два продукта деления P1,P2.

# 2 Moдель BROSA (MM-RNRM)

Модель BROSA состоит из двух элементов: многоканальной эволюции к этапу разрыва ядра на осколки и модели случайного разрыва шейки между осколкими. На этапе разрыва вытянутое ядро состоит из двух предварительно сформированных фрагментов, соединенных шейкой. Согласно модели RNRM (Random Neck Rupture Model) разрыв шейки происходит в случайном месте. В результате образуются два фрагмента деления [1].

При делении ядро эволюционирует от деформации основного состояния к предразрывной деформации. Ключевой вопрос заключается в том, каковы оптимальные траектории? В частности, какова максимальная энергия вдоль оптимальной траектории (высота барьера), каковы симметрии ядра на барьере (в седловой точке) и какова плотность уровней на барьере? С момента открытия деления принято рассчитывать потенциальную энергию ядра в зависимости от формы в терминах модели жидкой капли, в которой потенциальная энергия представляет собой сумму поверхностной и кулоновской энергий. Это описание было впервые использовано Мейтнером и Фришем, но вскоре поставлено на более количественную основу в основополагающей статье Бора и Уилера

#### 2.1 Обобщенные формы Лоуренса

При отслеживании ядра на его пути к расщеплению требуется параметризация его формы, которая способна описать все возможные деформации между основным (сферическим) состоянием и удлиненной (вообще говоря, асимметричной) формой ядра. Ядро состоит из двух предварительно сформированных фрагментов, соединенных шейкой. Модель BROSA использует обобщенные формы Лоуренса для параметризации деформированного ядра:

$$\rho^2(\xi) = (l^2 - \xi^2) \sum_{n=0}^N a_n (\xi - z)^n \tag{1}$$

Форма ядра задается формулой, определяющей зависимость параметра  $\rho$  от параметра  $\xi$  (см. рисунок 2), а также пятью параметрами:

- l мера удлинения ядра
- r радиус шейки

z - положение самого тонкого места на шейке или самого толстого места, если шейки нет

- с кривизна шейки
- s положение центра масс.

Коэффициенты  $a_n$  (n=0...4) выражаются через эти пять параметров с помощью следующих условий: радиус шейки должен быть равен г при  $\xi = z$ , первая производная должна быть равна нулю при  $\xi = z$ , вторая производная связана с кривизной при  $\xi = z$ , объем сохраняется, и центр масс покоится.



Рис. 2: Геометрический смысл пяти степеней свободы l, r, z, s, and c.

Если 
$$\xi = z$$
 то  
 $\rho^2 = (l^2 - z^2)(a_0 + a_1(\xi - z) + a_2(\xi - z)^2 + a_3(\xi - z)^3 + a_4(\xi - z)^4) = (l^2 - z^2)^2 a_0 = r^2$  (2)

откуда получаем

$$a_0 = \frac{r^2}{(l^2 - z^2)} \tag{3}$$

Радиус кризны определяется кривизной окружности, уравнение которой имеет вид

$$(\xi - z)^2 + (\rho - (r + \frac{1}{c}))^2 = (\frac{1}{c})^2$$
(4)

поскольку поведение кривизны окружности такое же, как кривизна шейки ядра при $\xi=z,$ следовательно, производные одинаковы в этой точке, то есть:

$$\rho'|_{\xi=z} = 0 \tag{5}$$

$$2\rho\rho' = (-2\xi)\left(\sum_{n=0}^{4} a_n(\xi-z)^n\right) + (l^2 - z^2)(a_1 + 2a_2(\xi-z) + 3a_3(\xi-z)^2 + 4a_4(\xi-z)^3)$$
(6)

Решая уравнение (6), получим,

$$a_1 = \frac{2za_0}{(l^2 - z^2)} \tag{7}$$

Вторая производная функции, описывающей окружность шейки ядра, равна с. Поскольку радиус шейки при  $\xi = z$  ведет себя как окружность, кривизна которой равна с, то

$$\rho''|_{\xi=z} = c \tag{8}$$

$$2\rho^{\prime 2} + 2\rho\rho^{\prime\prime} = -4\xi(a_1 + 2a_2(\xi - z) + 3a_3(\xi - z)^2 + 4a_4(\xi - z)^3) -$$
(9)

$$-2\left(\sum_{n=0}^{\infty} a_n(\xi-z)^n\right) + (l^2 - z^2)(2a_2 + 6a_3(\xi-z) + 12a_4(\xi-z)^2)$$

Решая уравнение, получим:

$$a_2 = \frac{rc}{(l^2 - z^2)} + \frac{l^2 + 3z^2}{(l^2 - z^2)^2} a_0 \tag{10}$$

Исходя из сохранения объема и постоянства положения центра масс, мы можем определить два других коэффициента. Для простоты будем считать, что в основном состоянии объем ядра сферический. Параметр z определяет положение самой тонкой точки на шейке или самой толстой точки фигуры, если шейка отсутствует. Пятый параметр s обозначает положение центра тяжести. Плоскость  $\xi = 0$  определяется путем разрезания ядра на две части равной длины l. В случае сферического основного состояния l и г совпадают с радиусом составного ядра  $r_{CN}$ .

Чтобы определить объем ядра в процессе деления, мы предположим, что для любой точки поперечное сечение ядра представляет собой окружность с радиусом  $\rho$ . Тогда объём V ядра определяется выражением:

$$V = \sum_{i} \pi \rho_i^2 \Delta \xi = \int_{-l}^{l} \pi \rho^2(\xi) d\xi$$
(11)

положение центра масс определяется на основе классического определения центра масс

,

$$R_c = \frac{\sum\limits_{i} \eta \pi \rho_i^2 \Delta \xi \xi_i}{\sum\limits_{i} \eta \pi \rho_i^2 \Delta \xi} = \frac{\int\limits_{-l}^{l} \rho^2(\xi) \xi d\xi}{\int\limits_{-l}^{l} \rho^2(\xi) d\xi} = s$$
(12)

Интегрируя выражения (11) и (12) при z = 0, получаем

$$V = \frac{4}{3}\pi l^3(a_0 - za_1) + \frac{4}{15}\pi l^3[(l^2 + 5z^2)a_2 - z(3l^2 + 5z^2)a_3] + \frac{4}{105}\pi l^3(3l^4 + 56l^2z^2 + 140z^4)a_4$$
(13)

$$\frac{sV}{\pi} = \frac{4}{15}l^5(a_1 - 2za_2) + \frac{4}{35}l^5[(l^2 + 7z^2)a_3 - 12z(3l^2 + 7z^2)a_4]$$
(14)

Решая систему уравнений (13) и (14) получаем

$$a_{3} = \frac{1680\pi l^{7} z a_{0} + 3920\pi l^{5} z^{3} a_{0}}{-36\pi l^{11} + 252\pi l^{9} z^{2} + 84\pi l^{7} z^{4} + 980\pi l^{5} z^{6}} + \\ + \frac{84\pi l^{9} a_{1} + 2856\pi l^{7} z^{2} a_{1} + 4900\pi l^{5} z^{4} a_{1}}{-36\pi l^{11} + 252\pi l^{9} z^{2} + 84\pi l^{7} z^{4} + 980\pi l^{5} z^{6}} -$$

$$- \frac{315sVl^{4} + 1260zVl^{4} + 4410sz^{2}Vl^{2} + 2940z^{3} l^{2}V + 3675sz^{4}V}{-36\pi l^{11} + 252\pi l^{9} z^{2} + 84\pi l^{7} z^{4} + 980\pi l^{5} z^{6}} - \\ a_{4} = \frac{420\pi l^{7} a_{0} + 2940\pi l^{5} z^{2} a_{0} + 1008\pi l^{7} z a_{1} + 3920\pi l^{5} z^{3} a_{1}}{-36\pi l^{11} + 252\pi l^{9} z^{2} + 84\pi l^{7} z^{4} + 980\pi l^{5} z^{6}} - \\ - \frac{84\pi l^{9} a_{2} + 2184\pi l^{7} z^{2} a_{2} + 4900\pi l^{5} z^{4} a_{2}}{-36\pi l^{11} + 252\pi l^{9} z^{2} + 84\pi l^{7} z^{4} + 980\pi l^{5} z^{6}} - \\ - \frac{315l^{4}V + 2205l^{2} szV + 2205l^{2} z^{2}V + 3675sz^{3}V}{-36\pi l^{11} + 252\pi l^{9} z^{2} + 84\pi l^{7} z^{4} + 980\pi l^{5} z^{6}} - \\ \end{array}$$

$$(16)$$

Мы получили приближенные формулы для постоянных  $a_{0-4}$  через параметры, определяющие степени свободы:

$$a_{0} = \frac{r^{2}}{(l^{2} - z^{2})}; \quad a_{1} = \frac{2za_{0}}{(l^{2} - z^{2})}$$

$$a_{2} = \frac{rc}{(l^{2} - z^{2})} + \frac{l^{2} + 3z^{2}}{(l^{2} - z^{2})^{2}}a_{0}$$

$$a_{3} = \frac{1680\pi l^{7}za_{0} + 3920\pi l^{5}z^{3}a_{0}}{-36\pi l^{11} + 252\pi l^{9}z^{2} + 84\pi l^{7}z^{4} + 980\pi l^{5}z^{6}} + \frac{84\pi l^{9}a_{1} + 2856\pi l^{7}z^{2}a_{1} + 4900\pi l^{5}z^{4}a_{1}}{-36\pi l^{11} + 252\pi l^{9}z^{2} + 84\pi l^{7}z^{4} + 980\pi l^{5}z^{6}} - \frac{315sVl^{4} + 1260zVl^{4} + 4410sz^{2}Vl^{2} + 2940z^{3}l^{2}V + 3675sz^{4}V}{-36\pi l^{11} + 252\pi l^{9}z^{2} + 84\pi l^{7}z^{4} + 980\pi l^{5}z^{6}} - \frac{420\pi l^{7}a_{0} + 2940\pi l^{5}z^{2}a_{0} + 1008\pi l^{7}za_{1} + 3920\pi l^{5}z^{3}a_{1}}{-36\pi l^{11} + 252\pi l^{9}z^{2} + 84\pi l^{7}z^{4} + 980\pi l^{5}z^{6}} - \frac{84\pi l^{9}a_{2} + 2184\pi l^{7}z^{2}a_{2} + 4900\pi l^{5}z^{4}a_{2}}{-36\pi l^{11} + 252\pi l^{9}z^{2} + 84\pi l^{7}z^{4} + 980\pi l^{5}z^{6}} - \frac{315l^{4}V + 2205l^{2}szV + 2205l^{2}z^{2}V + 3675sz^{3}V}{-36\pi l^{11} + 252\pi l^{9}z^{2} + 84\pi l^{7}z^{4} + 980\pi l^{5}z^{6}} - \frac{315l^{4}V + 2205l^{2}szV + 2205l^{2}z^{2}V + 3675sz^{3}V}{-36\pi l^{11} + 252\pi l^{9}z^{2} + 84\pi l^{7}z^{4} + 980\pi l^{5}z^{6}} - \frac{315l^{4}V + 2205l^{2}szV + 2205l^{2}z^{2}V + 3675sz^{3}V}{-36\pi l^{11} + 252\pi l^{9}z^{2} + 84\pi l^{7}z^{4} + 980\pi l^{5}z^{6}} - \frac{315l^{4}V + 2205l^{2}szV + 2205l^{2}z^{2}V + 3675sz^{3}V}{-36\pi l^{11} + 252\pi l^{9}z^{2} + 84\pi l^{7}z^{4} + 980\pi l^{5}z^{6}} - \frac{315l^{4}V + 2205l^{2}szV + 2205l^{2}z^{2}V + 3675sz^{3}V}{-36\pi l^{11} + 252\pi l^{9}z^{2} + 84\pi l^{7}z^{4} + 980\pi l^{5}z^{6}} - \frac{315l^{4}V + 2205l^{2}szV + 2205l^{2}z^{2}V + 3675sz^{3}V}{-36\pi l^{11} + 252\pi l^{9}z^{2} + 84\pi l^{7}z^{4} + 980\pi l^{5}z^{6}} - \frac{315l^{4}V + 2205l^{2}szV + 2205l^{2}z^{2}V + 3675sz^{3}V}{-36\pi l^{11} + 252\pi l^{9}z^{2} + 84\pi l^{7}z^{4} + 980\pi l^{5}z^{6}} - \frac{315l^{4}V + 2205l^{2}szV + 2205l^{2}z^{2}V + 3675sz^{3}V}{-36\pi l^{11} + 252\pi l^{9}z^{2} + 84\pi l^{7}z^{4} + 980\pi l^{5}z^{6}} - \frac{315l^{4}V + 2205l^{2}sV + 3675sz^{3}V}{-36\pi l^{11} + 252\pi l^{9}z^{2} + 84\pi l^{7}z^{4} + 980\pi l^{5}z^{6}} - \frac{315}{2}k^{2}V + 3675z^{2}V + 3675sz^{2}V}{-36\pi l^{2}V + 3675z^{2$$

Важно подчеркнуть, что этот подход удобен для описания формы делящегося ядра [4]. Чтобы учесть более высокие компоненты деформации, мы должны принять во внимание различные другие факторы, такие как зарядовые коэффициенты, масса фрагментов, температура и т.д.

**Пример 1:** Вот несколько примеров, иллюстрирующих изменение формы ядра при различных значениях параметров, отвечающих за степени свободы — см. рисунок **??**.



Рис. 3: Различные формы ядра на пути к делению

Рассмотрим компьютерно сгенерированные формы ядра урана [4] (слева на рис. 4) и



Рис. 4: Эволюция ядерных форм $^{238}{\rm U}$  (слева) <br/>и $^{208}{\rm Pb}$  (справа), начинающаяся в основном состоянии.

свинца(справа на рис. 4). Мы наблюдаем эволюцию формы ядра между основным состоянием и различными формами. Ядро <sup>238</sup>U сначала обладает деформацией основного состояния. Далее оно удлиняется на пути к делению. Характерная шейка появляется вскоре после прохождения второго барьера. В сверхдлинной моде ядро более вытянуто, чем в любой другой моде деления [2,3]. Кроме того, тут имеет место симметричное распределение массы. Для асимметричных режимов стандарта I и II слева находится более тяжелый из двух образующихся фрагментов. Из рисунка видно, что осколки деления, возникающие после разрыва шейки, являются сильно деформированными.

#### 2.2 Поверхностная энергия ядра

Энергия деформации может быть получена макроскопически-микроскопическим методом Струтинского. Основными составляющими являются энергия капли жидкости и оболочечная поправка.

В принципе, потенциальная энергия ядра также может быть получена непосредственно с помощью капельной модели. В этой модели ядро рассматривается как капля несжимаемой жидкости. Поверхностная потенциальная энергия может быть получена с помощью формулы:

$$W = \sigma S, \tag{18}$$

где  $\sigma$  – коэффициент поверхностного натяжения, S – площадь поверхности ядра как капли в капельной модели. Её можно вычислить по формуле:

$$S = \int_{-l}^{l} 2\pi \rho(\xi) \sqrt{1 + \rho'^2(x)} d\xi$$
(19)

Предположим, что мы выбрали для поиска фигуры параметры, соответствующие следую-

щим наборам [2]:

$$l = 1.140 \cdots (0.035) \cdots 2.085$$
  

$$r = r_0 \cdots (-0.02) \cdots r_0 - 0.038$$
  

$$z = 0.00 \cdots (0.02) \cdots 0.46$$
  

$$c = c_0 \cdots (0.09) \cdots c_0 + 1.53$$
  

$$s = 0.0000 \cdots (-0.0175) \cdots - 0.2975$$

для каждого параметра указано начальное значение, в скобках – шаг, конечное значение. При этом:

$$r_0 = l^{-0.5} + 0.05$$
$$c_0 = -l^{-2.5} - 0.5$$

Этот выбор параметров формы даёт более 4 миллионов различных форм для каждого ядра.

#### 2.3 Энергия кулоновского отталкивания

Ядро атома состоит из протонов и нейтронов, которые в совокупности называются нуклонами. Протоны, будучи положительно заряженными, оказывают друг на друга отталкивающее действие в соответствии с законом Кулона, который гласит, что одинаковые заряды отталкиваются. Эта сила отталкивания является важным фактором стабильности ядра, поскольку она конкурирует с сильным ядерным взаимодействием, которое удерживает нуклоны вместе. Модель капли жидкости, которая сравнивает ядро с каплей несжимаемой жидкости, позволяет оценить эту энергию, учитывая объем ядра и его поверхностные эффекты, а также кулоновские силы отталкивания.

$$E_c = a_c \frac{Z(Z-1)}{A^{1/3}} \tag{20}$$

где Z – атомный номер,  $a_c$  – коэффициент кулоновской энергии, А – массовое число

Понимание энергии Кулона имеет решающее значение при изучении барьеров деления, которые представляют собой энергетические препятствия, которые необходимо преодолеть, чтобы ядро подверглось делению.

## 3 Ядерная деформация

На рис. 5 показаны рассчитанные асимметричные и симметричные моды деления ядра <sup>243</sup>Am. Видно, что в асимметричной моде происходит деление на большой сферический фрагмент и более мелкий удлиненный деформированный фрагмент.



Рис. 5: Барьеры деления <sup>243</sup> Ат, соответствующие различным модам деления.

# 4 Заключение

- Изучена макроскопическая модель, в которой поверхность жидкой капли задаётся пятью параметрами (5 степеней свободы).
- Выведены формулы для коэффициентов  $a_0 a_4$ , входящие в формулу Лоуренса. Эти коэффициенты выражены через 5 параметров, задающих форму деформированного ядра.
- Для некоторых значений параметров, описывающих деформацию ядра, построены формы ядер.
- Получено выражение для площади поверхности деформированного ядра в зависимости от пяти параметров.
- Планируется вычислить энергию кулоновского отталкивания в зависимости от удлинения ядра и воспройзвести барьер деления в капельной модели.

# Список литературы

- M. Duijvestijn and Franz-Josef Hambsch. Mass distributions in nucleon-induced fission at intermediate energies. *Phys. Rev. C*, 64, 06 2001.
- [2] Tieshuan Fan, Zhiming Wang, Xin Zhu, Wenjie Zhu, and C. L. Zhong. Study of fivedimensional potential-energy surfaces for actinide isotopes by the macroscopic-microscopic method. *EPJ Web Conf.*, 146:04033, 2017.
- [3] Peter Möller, David G. Madland, Arnold John Sierk, and Akira Iwamoto. Nuclear fission modes and fragment mass asymmetries in a five-dimensional deformation space. *Nature*, 409:785–790, 2001.
- [4] Peter Möller, Arnold J. Sierk, Takatoshi Ichikawa, Akira Iwamoto, Ragnar Bengtsson, Henrik Uhrenholt, and Sven Åberg. Heavy-element fission barriers. *Phys. Rev. C*, 79:064304, Jun 2009.