

7th International Conference on Particle Physics and Astrophysics (ICPPA) October 22-25, 2024 Moscow, Russia

Neutrino astronomy at Lake Baikal

Dmitry Zaborov (INR RAS) for the Baikal-GVD Collaboration

Outline

- Current status of (High Energy) Neutrino Astronomy
- Baikal-GVD and its first results
- Future prospects

Neutrino telescope operation principle

- Large arrays of photo-sensors (PMTs) in water or ice
- Detect Cherenkov light
- "Tracks": v_{μ} CC
- "Cascades": $v_e \& v_\tau CC + NC$
- Direction reconstructed from hit positions and times (0.1° 1° for tracks; a few ° for cascades)
- Energy reconstructed from hit charges (~ 5-30% for cascades; ~ factor 2 – 3 for tracks)

Backgrounds

- Atmospheric neutrinos
 - All-sky, soft spectrum
 - For downgoing events, atmospheric muons can be used as veto (at very high energy)
- Atmospheric muons
 - Downgoing only (Earth acts as filter)
- Environmental background light: natural radioactivity (e.g. ⁴⁰K), bioluminescence, chemiluminescence
 - Random low-amplitude hits

Neutrino telescope world map 2024

IceCube

- 1 km³-scale neutrino detector at South Pole
- Construction started in 2005
- Completed by 2011

23 Oct 2024

Diffuse neutrino flux (IceCube)

. . .

The existence of a diffuse neutrino flux is firmly established, but its origin remains unknown

²³ Oct 2024

Individual neutrino sources observed by IceCube

TXS 0506+056 (blazar at z= 0.34 (1.7 Gpc))

High-energy IceCube v coincident with a γ -ray flar from the blazar TXS 0506+056 (Sep 22, 2017)

 E_{ν} [GeV]

NGC 1068 (Seyfert, 14.4 Mpc)

Dmitry Zaborov - Neutrinc

²³ Oct 2024

Galactic Diffuse neutrino flux observed by IceCube

KM3NeT – ARCA (under construction)

Vertical spacing: 36 m Horizontal spacing: 90 m Mediterranean sea, 80 km offshore Sicily Depth 3500 m

Digital Optical Module

- 31 x 3" PMTs
- PMT HV
- LED & piezo
- FPGA readout
 - DWDM photocathode area similar to a 17" PMT
- Uniform angular coverage
- Directional information
- ✓ Digital photon counting
- All data to shore

Optical background (mainly ⁴⁰K): 5-10 kHz

23 Oct 2024

KM3NeT/ARCA – current status

A neutrino candidate event with E > 10 PeV (from 1° above horizon)

ICHEP'2024

23 Oct 2024

Dmitry Zaborov - Neutrino Astronomy at Lake Baikal

KM3NeT/ORCA – current status

23 Detection units deployed (out of 115) Mii 115 strings 18 DOMs / string ~ 225 m 1 0 0 200 m Depth=2450 r 23

P. Coyle,

ICHEP'2024

^{12 / 32}

Baikal-GVD and its first results

Baikal-GVD site

- High water transparency
 - Absorption length: 22 m
 - ✓ Scattering length: $30 50 \text{ m} (L_{eff} \approx 480 \text{ m})$
- Moderately low optical background: 15–40 kHz (PMT R7081-100 Ø10")

- 51° 46' N 104° 24' E
- Southern basin of Lake Baikal
- ~ 4 km away from shore
- Flat area at depths 1366 1367 m
- Stable ice cover for 6–8 weeks in February April: detector deployment & maintenance

23 Oct 2024

Baikal-GVD collaboration (as of Oct 2024)

11 organisations from 4 countries, ~60 collaboration members

- Institute for Nuclear Research RAS (Moscow)
- Joint Institute for Nuclear Research (Dubna)
- Irkutsk State University (Irkutsk)
- Skobeltsyn Institute for Nuclear Physics MSU (Moscow)
- Nizhny Novgorod State Technical University (Nizhny Novgorod)
- Saint-Petersburg State Marine Technical University (Saint-Petersburg)
- Institute of Experimental and Applied Physics, Czech Technical University (Prague, Czech Republic)
- LATENA (St. Petersburg)
- INFRAD (Dubna)
- Comenius University (Bratislava, Slovakia)
- Institute of Nuclear Physics ME RK (Almaty, the Republic of Kazakhstan)

23 Oct 2024

Baikal-GVD technology

section

section

section

٠

buoy

36 OMs (10" high **QE PMT**, 15 m spacing, all PMTs look downward)

- 4 acoustic • modems of the positioning system
- Section • modules digitize OM signals and send data to shore via shDSL/Ethernet
 - Depths 750 m to 1275 m optical module string master module section master module anchor

16 / 32

Deployment

23 Oct 2024

Baikal-GVD : current status

14 clusters + 8 laser stations/inter-cluster strings + 4 experimental strings

Eff. volume 2024: ~ 0.6 km³ (cascades, $E \sim 1 \text{ PeV}$)

23 Oct 2024

Search for upward-going cascade events

Data from 2018 – 2021 Event selection:

 $E > 15 \text{ TeV } \& N_{hit} > 11 \& \cos\theta_{z} < -0.25$

Expected:

0.95 events from atm. muons 3 events from atm. neutrinos 10 events for IceCube's E^{-2.46} astrophysical flux

Found in data: 11 events

The "no diffuse flux" hypothesis is rejected with

P-value = 0.00268 (3.1 σ)

Statistical significance increases to 4.2 σ when 2022 data are added (not shown here) 23 Oct 2024 Dmitry Zaborov - Neutrino

Diffuse neutrino flux spectrum with Baikal-GVD

https://doi.org/10.1103/PhysRevD.107.042005

Baikal-GVD (2018-2021, Upward-going) this study, best fit

IceCube HESE (7.5y, Full-sky) Phys. Rev. D 104, 022002 (2021)

IceCube Inelasticity Study (5y, Full-sky) Phys. Rev. D 99, 032004 (2019)

IceCube Cascades (6y, Full-sky) Phys. Rev. Lett. 125, 121104 (2020)

IceCube Tracks (9.5y, Northern Hemisphere), The Astrophysical Journal 928, 50 (2022)

ANTARES Cascades+Tracks (9y, Full-Sky) PoS(ICRC2019) 891 (2020)

$$\Phi_{astro}^{\nu+\bar{\nu}} = 3 \times 10^{-18} \phi_{astro} \left(\frac{E_{\nu}}{E_0}\right)^{-\gamma_{astro}}$$

Analysis update (> 5 σ) is coming, stay tuned!

Baikal-GVD cascade events skymap (2018-2022)

https://doi.org/10.1093/mnras/stad2641

Event triplet near Galactic plane

Three events close to the Galactic plane (grey line)

The red plus and circle – IC hotspot [Aartsen & et al. ApJ, 835,151 (2017)]

LS I +61 303 is a γ-ray microquasar

https://doi.org/10.1093/mnras/stad2641

A high energy neutrino from the direction of TXS 0506+056

Analysis of data collected between April 2018 and March 2022 yields a sample of 11 high quality cascade-like neutrino candidate events, one of which lies within 90% error circle from TXS 0506+056

GVD210418CA

MJD = 59322.94855324 Zenith = 115° RA, Dec = 82.4°, 7.1° E = 224±75 TeV

23 Oct 2024

This event is probably of astrophysical origin (signalness = 97%)

The chance probability for such an association to occur randomly due to the background is p = 0.0074 *https://doi.org/10.1093/mnras/stad3653*

Probing Galactic neutrino flux above 200 TeV with Baikal-GVD

Publication in preparation

23 Oct 2024

Analysis of track-like events

2020-2021 data

Neutrino candidate (example) late early E = 100 TeV

671 neutrino candidate events found in 2 yr of data (dominated by atmospheric neutrino)

Work in progress...

Also see Eur. Phys. J. C 81 (2021) 1025

23 Oct 2024

Neutrino candidate example

Multi-cluster tracks

Green: Multi-cluster neutrino candidate events / (150 days in 2019, dominated by atmospheric events) Red: the 100 TeV single-cluster event (high probability of astrophysical origin)

Atm muon bundle (2019 data) early nitry Zaborov - Neutrino Astronomy at Lake Baikal

Future prospects

23 Oct 2024

IceCube Gen2

plan to build ~8 km³ optical array and a ~500 km³ radio array

Optical: 120 new strings with 80 DOMs each (9600 OMs total) → sensitivity up to 8x IceCube Radio : 200 stations at shallow depth (0-100 m) → sensitivity to E > 10 PeV *https://doi.org/10.1088/1361-6471/abbd48* 23 Oct 2024 Dmitry Zaborov - Neutrino Astronomy at Lake Baikal

P-ONE

An initiative towards constructing a multi-cubic-kilometre neutrino telescope in the **Pacific Ocean** off the coast of **Canada**

Status: some prototype lines deployed

https://www.pacific-neutrino.org

Chinese neutrino telescope proposals (R&D phase) тпо нимт меом

- ✤ 7.5 km³
- 24200 DOMs on 1211 strings
- Hybrid DOMs (PMTs + SiPMs)
- South China sea

doi:10.1038/s41550-023-02087-6

23 Oct 2024

- → 10 km³
- ~18000 DOMs on
 ~1000 strings
- multi-PMT DOMs
- South China sea

arXiv:2408.05122

Technological prototype strings at Lake Baikal (2024)

23 Oct 2024

Summary

- Baikal-GVD is a new neutrino telescope under construction in Lake Baikal
 - Volume approaching 0.6 km³ (cascades, E ~ 1 PeV)
 - Angular resolution better than 1° (tracks)
 - Field of view complementary to IceCube
- The IceCube's diffuse neutrino flux is confirmed by Baikal-GVD with a > 3σ significance
- Hints of Galactic and extragalactic neutrino sources are accumulating

Backup slides

Water/Ice optical properties

	Light absorption length	Effective light scattering length	Journal ref.
Antarctic ice (IceCube)	16-270 m	5-100 m	doi:10.1016/ j.nima.2013.01.054
Mediterranean sea	60 m	~ 260 m	doi:10.1016/ j.astropartphys.2004.11.006
Lake Baikal	24 m	~ 480 m	doi:10.1016/ j.nima.2012.06.035
South China sea	27 m	> 500 m	doi:10.1038/s41550-023- 02087-6, arXiv:2407.19111
Pacific (P-ONE)	> 28 m	?	doi:10.1140/epjc/s10052- 021-09872-5

Limits low energy	Limits angular
performance	resolution
and how sparse	
the detector can be	
Dmitry Zaborov - Neutrin	o Astronomy at Lake Baikal

Expected neutrino rates from individual sources

Table 2. Registration rate (counts/5 years) for KM3NeT/ARCA (ARCA) and Baikal-GVD (Baikal) at trigger (trig) and reconstruction (reco) levels. The first column shows the calculation results from [1]. The second and the third ones show our results for KM3NeT/ARCA and Baikal-GVD. These three columns are for the trigger level, and the fourth column shows the ratio for Baikal-GVD and KM3NeT/ARCA also at the trigger level. The fifth column shows Baikal-reconstruction registration rate, and in the rightmost column Baikal-GVD reconstruction-trigger ratio is presented

Source	ARCA trig [1]	ARCA (trig)	Baikal (trig)	<u>Baikal</u> ARCA	Baikal (reco)	reco trig
RX J1713.7-3946	20.0	17.9	11.4	0.64	2.3	0.20
Vela X	40.7	37.2	19.5	0.52	4.88	0.25
Vela Jr	25.6	23.7	13.6	0.58	2.83	0.21
HESS J1614-518 (1)	10.5	9.0	6.1	0.68	1.5	0.25
HESS J1614-518 (2)	9.1	8.4	5.2	0.62	1.2	0.23
Galactic center	7.0	5.5	3.9	0.71	0.93	0.24
MGRO J1908+06 (1)	4.1	3.5	1.6	0.46	0.31	0.19
MGRO J1908+06 (2)	7.1	5.8	3.1	0.54	0.80	0.26
MGRO J1908+06 (3)	8.3	6.7	3.8	0.56	1.0	0.28
NGC 1068	—	52.8	66.4	1.3	3.1	0.05
TXS 0506+056 (1)	_	5.8	3.4	0.59	0.97	0.29
TXS 0506+056 (2)	_	5.0	3.1	0.63	0.96	0.31

PHYSICS OF PARTICLES AND NUCLEI LETTERS Vol. 21 No. 4 2024

Fig. 2. 20-clustered Baikal-GVD effective area (blue) and 230-string KM3NeT effective area (red) at the trigger level [6].

https://doi.org/10.1134/S1547477124700912

23 Oct 2024

Dmitry Zaborov - Neutrino Astronomy at Lake Baikal

35 / 32

A PeV neutrino candidate event in KM3NeT/ARCA

A nearly horizontal muon

E > 10 PeV

Event consistent with a neutrino-induced muon

Atmospheric muon origin disfavored

ICHEP'2024

200

ARCA - angular resolution Tracks Showers

~ 0.1° angular resolution for tracks (E>100 TeV); ~ 2° for showers

23 Oct 2024

Angular resolution [°]

Neutrino absorption in the Earth

Neutrino as astrophysical messenger

- Can escape from dense environments
- Travels unimpeded through gas and dust
- Does not interact with CMB and infrared background
- Stable (no decay)
- Not affected by magnetic fields
- Arrival direction points to the source
- High-energy neutrinos trace production and acceleration sites of cosmic rays

Neutrino production recipe

1) Accelerate protons (or heavier ions)

2) Have them interact with medium or radiation

In photon-reach environments: $p \gamma \rightarrow \pi$ In proton-reach environments : $p p \rightarrow \pi$

3) Decay pions*

* Other hadrons also contribute

The sites where this processes occurs are under debate

Figure from Relner et al, PRD (2008)

23 Oct 2024

Neutrino interactions at high energy

At high energies, the dominant process is deep inelastic scattering on quarks

Interaction probability rises with energy

A. Cooper-Sarkar, P. Mertsch, and S. Sarkar, JHEP 2011, 42.

Dmitry Zaborov - Neutrino Astronomy at Lake Baikal

Cascade analysis : effective area and rates

Analysis sensitive to all-flavour CC and NC interactions over the whole sky

Assumption for astrophysical neutrino energy spectrum (IceCube fit): 4.1 • 10⁻⁶ F^{-2.46} GeV⁻¹ cm⁻² s⁻¹ sr⁻¹

neutrino effective area for cascade detection

23 Oct 2024

Neutrino effective volume for tracks (one GVD cluster)

²³ Oct 2024

Expected performance for tracks

Improvements expected from likelihoodbased reconstruction (under development)

G. Safronov et al. @ ICRC 2021 & ICRC 2023

44 / 32

Cascade analysis performance

Sky visibility with upgoing tracks

Complementary sky coverage

Galactic center better viewed from Northern hemisphere (through the Earth)

23 Oct 2024

23 Oct 2024

Upward-going cascade #1

Preliminary

GVD2019_1_114_N

Contained event (50 m off central string)

Excellent candidate for a neutrino event of astrophysical origin

Sky plot of γ-ray sources (credit: D.Semikoz, A.Neronov)

eutrino event of PKS 0302-16 : unknown type of source PMN J0301-1652 : unknown type of source PMN J0301-1652 : unknown type of source 47 / 32

Water optical properties

23 Oct 2024

ANTARES in Mediterranean sea

- > 40 km offshore Toulon, France
- > 2.5 km depth
- > 885 optical modules on 12 strings
- > ~ 12 Mton instrumented volume

ANTARES OM: 10" Hamamatsu PMT

- Array completed in 2008
- Dismantled in Feb 2022

ANTARES point-source searches

Some evidence for non-uniform skymap in 10 years of IceCube data (3.3σ) . Mostly resulting from 4 extragalactic source candidates.

No indications for galactic sources.

