The 7th International Conference on Particle Physics and Astrophysics (ICPPA-2024)

On the clustering methods of large muon events on the LVD detector

Mark Simanovskiy ¹, Natalia Agafonova²,

¹ NRNU MEPhI, MASimanovskiy@mephi.ru ² INR RAS, agafonova@inr.ru For the LVD Collaboration

October 25, 2024

Introduction	Problem	Methods	Analysis	Conclusion
0000	000	0000000000	000000	000
Table of Co	ontents			

1 Introduction

Mark Simanovskiy – On the clustering methods of large muon events on the LVD detector 🛛 🔍 🗗 🗸 🗗

Introduction	Problem	Methods	Analysis	Conclusion
●000	000	0000000000	000000	000

Introduction

Introduction 0000 Problem

Methods 00000000000 Analysis

Conclusion 000

Large Volume Detector

Underground neutrino observatory mainly designed to study neutrinos from core-collapse supernovae

Figure: LVD @ INFN Gran Sasso National Laboratory

Introduction	Problem	Methods	Analysis	Conclusion
00●0	000	0000000000	000000	000
LVD				

3 towers by $8\times5\times7=840$ counters Main neutrino reaction:

$$\bar{\nu}_e + p \to e^+ + n \tag{1}$$

LVD can act as a beam monitor, detecting the interaction of neutrinos inside the detector and the muons generated by the ν_{μ} interaction in the rock upstream detector.

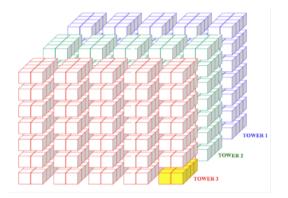


Figure: LVD counters arrangement scheme

Large muon event registration

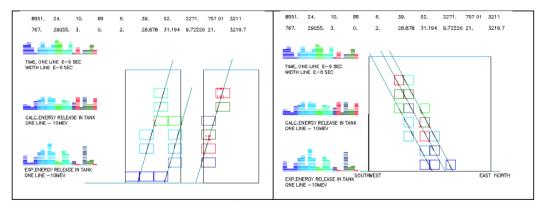


Figure: Multiple muon registration

Introduction	Problem	Methods	Analysis	Conclusion
0000	●00	0000000000	000000	000

Problem

Mark Simanovskiy - On the clustering methods of large muon events on the LVD detector

Introduction	Problem	Methods	Analysis	Conclusion
0000	○●○	0000000000	000000	000
Problem Sta	atement			

O Neutrino bursts identification idea based on clusters of active events detecting

- ② The task of clustering events in a partially ordered time series of detector counter readings
- **③** Clipping the size of events leads to
 - loss of large series detection
 - systematic error accumulation in the spectral distributions of observations

Introduction	Problem	Methods	Analysis	
0000	00●	0000000000	000000	

Previously. Fixed window approach

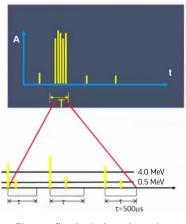


Figure: fixed window detection

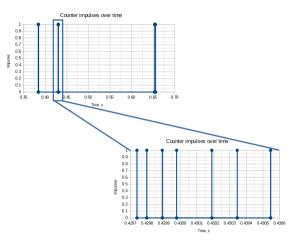
Window opens at High energy threshold and listening everything for fixed time τ .

Introduction	Problem	Methods	Analysis	Conclusion
0000	000	●000000000	000000	000
1				

Methods

Mark Simanovskiy – On the clustering methods of large muon events on the LVD detector 🗖 🖉 🗗

> < □ > < ≥ > < ≥ > ≤ ≤ < 2</p>
> 20/29


Introduction	Problem	Methods	Analysis	Conclusion
0000	000	⊙●○○○○○○○○	000000	000
Preliminaries				

Consider discrete-continuous impulse system where:

- the sequence number corresponds to the discrete internal time of the system
- the timestamp corresponds to the continuous "spatial" variable

Preliminaries. General log of all pules of all counters

High density of pulses inside the event

Figure: time series pulse log

Introduction	Problem	Methods	Analysis	Conclusion
0000	000	000●000000	000000	000
Preliminaries				

In order to separate events recorded in a single storage asynchronously, it is necessary to arrange them by a temporary variable

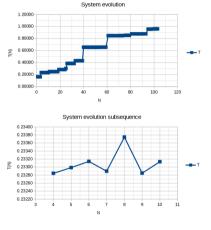
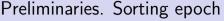
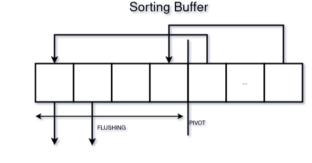




Figure: time series evolution

Introduction	Problem	Methods	Analysis	Conclusion
0000	000	0000●000000	000000	000
Preliminaries	Sorting enoch			

Fill buffer

- Ø Sort it
- Flush buffer until pivot
- Move values after pivot instead of flushed elements

Figure: time series evolution

Introduction Problem	Methods	Analysis	Conclusion
0000 000	00000●00000	000000	000

Preliminaries. After reordering

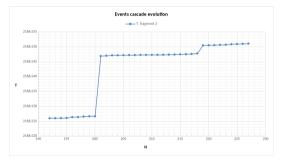


Figure: Events cascade evolution fragment

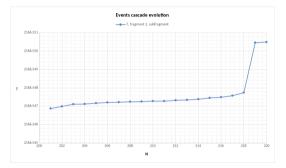


Figure: Events cascade evolution, its sub-fragment

Hypotheses 1. Uniform time evolution

The evolution of a time series system corresponds to an pulse system T(N). Let us assume that temporal variable increases uniformly within an event cluster:

$$T(N + \Delta N) = T(N) + \Delta T = T(N) + k\Delta N$$
⁽²⁾

Thus, we require an invariant of the slope value' for cluster C_k :

$$k = T(N+1) - T(N) \ \forall N, N+1 \in C_k$$
(3)

Assuming a normal error distribution, it can be assumed that the "next" temporal element, which strongly changes the variance of all calculated slopes of the event, does not fit to it.

For
$$C_k = N_{k_0}, ..., N_{k_i}$$

 $\sigma_i^2 = Var X(N_{k_0} : N_{k_i}), \sigma_{i+1}^2 = Var X(N_{k_0} : N_{k_i}) \cup \{k_{i+1}\},$ (4)
 $(i+1) \notin C_k \Leftrightarrow \sigma_{i+1}^2 >> \sigma_i^2$ (5)

Introduction	Problem	Methods	Analysis	Conclusion
0000	000	○○○○○○○○●○○	000000	000
Spliiters				

Let each of the online observers of the time series have a CRIT value, the overcoming of which indicates the fulfillment of the hypothesis condition

 $k_{i+1} > k_{CBIT}$ 2 $\frac{\left|k_{i+1} - \bar{k}\right|}{\bar{k}} > \varepsilon_{CRIT}$ 3 $\sigma_{k\perp 1}^2 - \sigma_k^2 > \Delta Var_{CRIT}$ 4 $\frac{\left|\sigma_{i+1}^2 - \sigma_k^2\right|}{\varepsilon Var_{CRIT}} > \varepsilon Var_{CRIT}$

Introduction	Problem	Methods	Analysis	Conclusion
0000	000	○○○○○○○○●○	000000	000
Welford's sta	tistics			

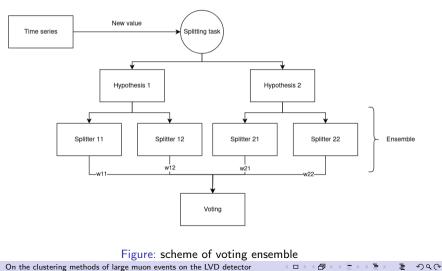
Storing all cluster values consume memory. Calculating "Online": Regular

$$\bar{x}_n = \frac{(n-1)\bar{x}_{n-1} + x_n}{n} = \bar{x}_{n-1} + \frac{x_n - \bar{x}_{n-1}}{n}$$

$$\sigma_n^2 = \frac{(n-1)\,\sigma_{n-1}^2 + (x_n - \bar{x}_{n-1})(x_n - \bar{x}_n)}{n} = \sigma_{n-1}^2 + \frac{(x_n - \bar{x}_{n-1})(x_n - \bar{x}_n) - \sigma_{n-1}^2}{n}$$

Subtracting a small number from a large number \rightarrow float point arithmetic instability

Introduction	Problem	Methods	Analysis	Conclusion
0000	000	○○○○○○○○●○	000000	000
Welford's statist	ics			


Storing all cluster values consume memory. Calculating "Online": Welford

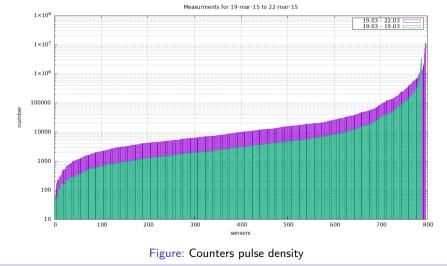
$$\bar{x}_n = \frac{(n-1)\bar{x}_{n-1} + x_n}{n} = \bar{x}_{n-1} + \frac{x_n - \bar{x}_{n-1}}{n}$$

$$M_{2,n} = M_{2,n-1} + (x_n - \bar{x}_{n-1})(x_n - \bar{x}_n)$$
$$\sigma_n^2 = \frac{M_{2,n}}{n}$$

Introduction	Problem	Methods	Analysis	Conclusion
0000	000	○○○○○○○○○●	000000	000

Voting ensemble

Mark Simanovskiy - On the clustering methods of large muon events on the LVD detector


Introduction	Problem	Methods	Analysis	Conclusion
0000	000	0000000000	●00000	000
		000000000		

Analysis

Mark Simanovskiy – On the clustering methods of large muon events on the LVD detector 👘 💷 🖙 🗇 🤇 🕐 🤇 🕐

Measurements density

Mark Simanovskiy - On the clustering methods of large muon events on the LVD detector

< ロ > < 昂 > < 三 > < 三 > < 三 > < 〇 へ () > < ()

Introduction	Problem	Methods	Analysis	Conclusion
0000	000	0000000000	00●000	000
T(N) Evolution				

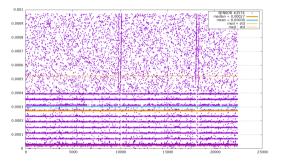


Figure: Counter evolution

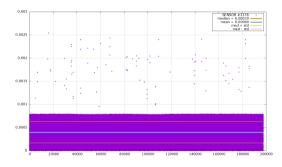
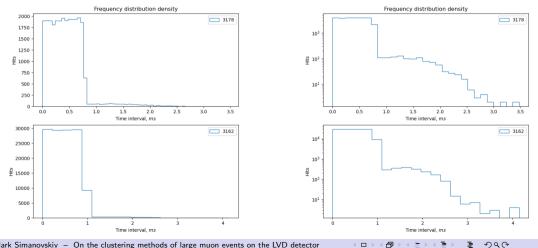
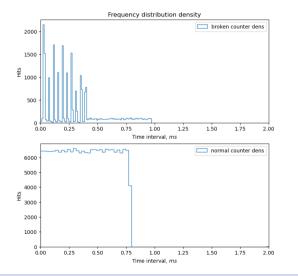



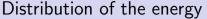
Figure: Counter evolution

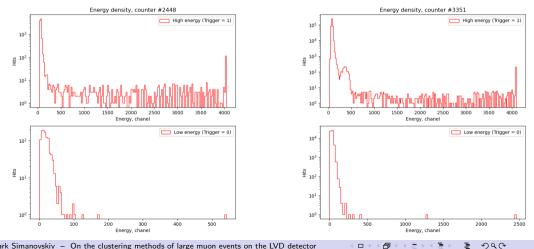
Introduction Problem Methods Analysis Conclusion 0000 000 0000000000 000000000 000	Introduction 0000	Problem 000			Conclusion 000
--	----------------------	----------------	--	--	-------------------


Distribution of the counting rate

Mark Simanovskiy - On the clustering methods of large muon events on the LVD detector

Introduction	Problem	Methods	Analysis	Conclusion
0000	000	0000000000	0000●0	000


Normal and probably broken counter comparison



Mark Simanovskiy - On the clustering methods of large muon events on the LVD detector

□ > < @ > < ≥ > < ≥ > ≤ ≥ ∽ Q (~ 25/29)

Mark Simanovskiy - On the clustering methods of large muon events on the LVD detector

Introduction	Problem	Methods	Analysis	Conclusion
0000	000		000000	●○○
1				

Conclusion

Mark Simanovskiy – On the clustering methods of large muon events on the LVD detector 🚽 🖛 🖛 🖛 🖛

<∄ > < ≧ > < ≧ > ≤ ≧ → ○ Q (~ 27/29

Introduction	Problem	Methods	Analysis	Conclusion
0000	000	0000000000	000000	○●○
Conclusion				

The considered approach can be applied to the problem of clustering muon large events on the $\ensuremath{\mathsf{LVD}}$

Introduction	Problem	Methods	Analysis	Conclusion
0000	000	0000000000	000000	○○●
References I				

- Agafonova, N.Y., Ryazhskaya, O.G. & LVD Collaboration. LVD—Multipurpose Russian–Italian Detector. Phys. Atom. Nuclei 85, 79–85 (2022)
- Agafonova, N., Aglietta, M., Antonioli, P., Bari, G., Bonardi, A., Boyarkin, V., Bruno, G., Fulgione, W., Galeotti, P., & Garbini, M. On-line recognition of supernova neutrino bursts in the LVD. Astroparticle Physics, 28(6), 516–522. (2008)
- M. Aglietta, B. Alpat, E.D. Alyea, P. Antonioli and etc Multiple muon events observed in the LVD experiment, Nuclear Physics B Proceedings Supplements, 35, 243-245. (1994)