Minimal analytical model of neutrino distribution function in supernova

Alexandra Dobrynina P. G. Demidov Yaroslavl State University, Russia

in collaboration with Igor Ognev and Eugenia Koptyaeva

7th International Conference on Particle Physics and Astrophysics (ICPPA-2024) 22 - 25 October 2024

Demidov University

Core-collapse supernova

 Supernova (SN) matter is opaque for neutrinos ⇒ neutrino interaction with SN matter is an important ingredient of core-collapse supernova models

[Colgate S. A., White R. H., Astrophys. J., 143, 626 (1966) (idea); Boccioli L., Roberti L., Universe, 10, 3 (2024) (modern (last) review)]

- Description of neutrino propagation in SNs is required a self-consistent solution of hydrodynamic and neutrino transport equations
- Boltzmann equation for non-equilibrium neutrino distribution function in SN matter is solved only numerically ⇒ it makes difficulties for use of results obtained to other problems
- It is useful to find an analytical approximation of results of numerical simulation

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

Neutrino distribution function in SN

● Neutrino propagation in SN is close to spherically symmetric ⇒ local non-equilibrium distribution function of neutrinos depends on 4 parameters

$$f_{\nu} \approx f_{\nu}(t, r, \varepsilon, \theta) \equiv f_{\nu}(\varepsilon, \theta)$$

where t is time after a bounce, r is distance from PNS center, θ is angle between neutrino momentum and radial direction of SN, ε is neutrino energy

• As $f_{\nu}(\varepsilon, \theta)$ is dimensionless function, we introduce dimensionless variables

$$x = \varepsilon / \varepsilon_*, y = 1 - \cos \theta$$

- ε_* is the energy parameter and it is connected with average neutrino energy
- Approximation of $f_{\nu}(\varepsilon, \theta)$ in SN conditions could be factorized as

$$f_{
u}(x,y,a,b) = N \Psi(x) \Phi(y)$$

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

- $\Psi(x)$ is the energy distribution
- $\Phi(y)$ is the angular distribution

Neutrino distribution function in SN

• Angular distribution is monotonically decreasing function and has a maximum in radial direction (y = 0)

$$\Phi_{max} = \Phi(0)$$

- Parameter **b** fixes a width of dispersion of $\Phi(y)$
- Maximum of $\Psi(x)$ is determinated by ε_* , $x = \varepsilon/\varepsilon_*$
- Parameter a fixes a width of dispersion of $\Psi(x)$
- N is normalization factor
- Minimal approximation of $f_{\nu}(\varepsilon, \theta)$ in SN conditions could be presented as 4-parametric approximation

$$f_{\nu}(\varepsilon, \theta) = N \Psi(x, a) \Phi(y, b)$$

- Here N, ε_* , a, b, as well as, $f(\varepsilon, \theta)$ depend on t, r, but for the simplicity of expressions this dependence is dropped
- Dimensionless spectral distribution: $F(x, a) = x^3 \Psi(x, a)$
- Connection of $arepsilon_*$ with average neutrino energy $\overline{arepsilon}_{
 u}$

$$\varepsilon_* = \overline{\varepsilon}_{\nu} \frac{\int\limits_{0}^{\infty} x^{-1} F(x, a) \, dx}{\int\limits_{0}^{\infty} F(x, a) \, dx}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Approximation of neutrino spectral distribution

Alpha-fit [Keil M. T. and et al, Astrophys. J. 590 (2003)]

$$F_{\alpha}(x, a_{\alpha}) = x^{a_{\alpha}} \exp(-x), \quad a_{\alpha} \in [1, \infty)$$

 Fermi-like approximation [Janka H.-T., Hillebrandt W., Astron. Astrophys. 224 (1989)]

$$F_F(x, a_F) = \frac{x^3}{\exp(x - a_F) + 1}, \quad a_F \in (-\infty, \infty)$$

 Modified Fermi-like approximation [Nadezhin D. K., Otroshchenko I. V., Sov. Astron. 24 (1980)]

$$F_N(x,a_N) = \frac{x^3 \exp(-a_N x^2)}{\exp(x) + 1}, \quad a_N \in [0,\infty)$$

• When parameter a increase, the width of spectral distribution F(x, a) decreases

Approximation of neutrino angular distribution

 Gaussian-like approximation [Dobrynina A. and et al, J. Phys. Conf. Ser. 1690 (2020)]

$$\Phi_G(y, b_G) = \exp\left(-\frac{y^2}{b_G}\right), \quad b_G \in (0, \infty)$$

Linear approximation

$$\Phi_L(y, b_L) = \begin{bmatrix} 1 - y/b_L \end{bmatrix} \Theta(b_L - y), \quad b_L \in (0, \infty)$$

- When parameter b increase, the width of angular distribution $\Phi(y, b)$ increases
- Neutrinosphere approximation

$$|f_S(r)|_{r\gg R_{\nu}} \approx F_{eq}(x) \Theta(R_{\nu}^2/(2r^2)-y)$$

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

where R_{ν} is the radius of the neutrinosphere. With growth of r a width of angular distribution decreases

Data of supernova simulation

- In our analysis we use of the PROMETHEUS-VERTEX code [Hüdepohl L., Ph.D. thesis (2014)]
 - Result of self-consistent solution of 1D hydrodynamic and neutrino transport equations
 - Tangent-ray discretization of the Boltzmann transport equation [Rampp M. and Janka H. T., Astron. Astrophys. 396 (2002)]
 - Results for electron neutrinos ν_e , electron antineutrinos $\overline{\nu}_e$ and all other neutrino types $\nu_x = \nu_{\mu,\tau}$, $\overline{\nu}_{\mu,\tau}$
 - Results of simulations of explosion of SN progenitors with masses of 11.2, 13.8, 15, 17.8, 20.6 and 25 M_☉ (models s11.2, s13.8, s15.0, s17.8, s20.6, s25.0) [Woosley S. E. and et al, Rev. Mod. Phys. 74 (2002)]
 - Model s15s7b2 with mass of SN progenitors of 15 M_{\odot} [Woosley S. E. and Weaver T. A., Astrophys. J. Suppl. 101 (1995)]
- Comparison of 1D codes of SN explosion shows good agreement between them [O'Connor E. and et al, J. Phys. G. 45 (2018)] ⇒ our conclusions based on PROMETHEUS-VERTEX code will be applicable for other models of SN explosions

Examples of spectrum approximation

Normalized spectral distribution for u_e in MeV

イロト イポト イヨト イヨト ニヨー

500

Model s15s7b2 with mass of SN progenitors of 15 M_{\odot}

Cyan line: numerical data; Magenta line: Alpha-fit; Pink line: Fermi-like approximation; Purple line: Modified Fermi-like approximation

Examples of angle distribution approximation

Neutrino angle distribution as function of $y = 1 - \cos \theta$ for ν_e

500

Model s15s7b2 with mass of SN progenitors of 15 M_{\odot}

Cyan line: numerical data; Magenta line: Gaussian-like approximation; Pink line: Linear approximation

Examples of spectral and angular parameters

Spectral a and angular b parameters as function of distance r

Magenta line: Alpha-fit; Pink line: Fermi-like approximation; Purple line: Modified Fermi-like approximation Magenta line: Gaussian-like approximation; Pink line: Linear approximation

イロト イポト イヨト イヨト ニヨー

Dac

Model s15s7b2 with mass of SN progenitors of 15 M_{\odot}

Approximation error

Error of spectral and angular approximations as function of distance r

Magenta line: Alpha-fit; Pink line: Fermi-like approximation; Purple line: Modified Fermi-like approximation Magenta line: Gaussian-like approximation; Pink line: Linear approximation

Model s15s7b2 with mass of SN progenitors of 15 M_{\odot}

- < ロ > < 団 > < 亘 > < 亘 > 三 · の < @

Conclusions

- Minimal 4-parametric distribution function of neutrino in core-collapse supernova is considered
- Three spectral and two angular neutrino approximations in SN are investigated
- Parameters of considered approximations are obtained as functions of time after a bounce and distance from PNS center for 7 model of SN with masses from 11.2 M_{\odot} to 25 M_{\odot}
- In inner part of supernova the neutrino distribution function can be approximated by Fermi-like approximation for spectral part and liner approximation for angular part
- In outer part of supernova the neutrino distribution function can be approximated by alpha-fit for spectral part and Gaussian-like approximation for angular part
- The behavior of approximation parameters significantly depends on part of the supernova, that is, it correlates with its characteristic spatial scale
- Approximation parameters of the neutrino distribution function change in a supernova in a wide range ⇒ it is important to find analytical approximation of them in terms of characteristic spatial scale of SN

Acknowledgements

The work is supported by the Russian Science Foundation (Grant No. 24-22-00417, https://rscf.ru/project/24-22-00417/)

Supernova spatial scales

Sketch from [Janka H. T., Astron. Astrophys. 368 (2001)]

Hierarchy of SN spatial scales: $R_{\nu} < R_{ns} < R_{eos} < R_g < R_s$ $(R_{\nu} \approx R_{ns}, R_{eos} \sim R_g)$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 日 ◆