Effective field theories (SMEFT) and search for New Physics

Eduard Boos SINP MSU

Grant RSCF 22-12-00152

What is a scale of New physics?

Before the LHC start we knew a scale ~1 TeV from

No lose theorem!

From the unitarity of VV->VV (V: W,Z) amplitudes: $\left| \text{Re}(a_i) \right| \le \frac{1}{2}$

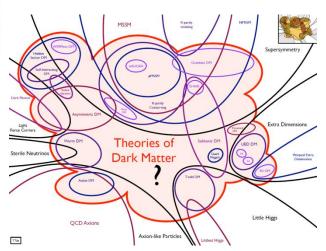
Either light Higgs
$$M_H \lesssim 710 \text{ GeV}$$

or

New Physics at
$$\sqrt{s} \lesssim 1.2 \text{ TeV}$$

The Higgs boson was found!

We do not have solid arguments for a new scale
We do not know if a new scale (if exists) would be accessible
at the LHC/FCC energies


Main directions beyond the Standard Model

Supersymmetry (MSSM, NMSSM...)

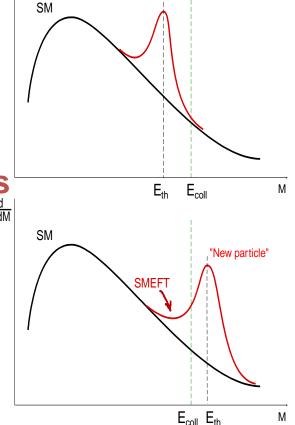
Extra space-time dimensions (ADD, RS, UED ...)

Compositeness, new strong dynamics (latest technicolor variants, Little Higgs...)

Grand unification

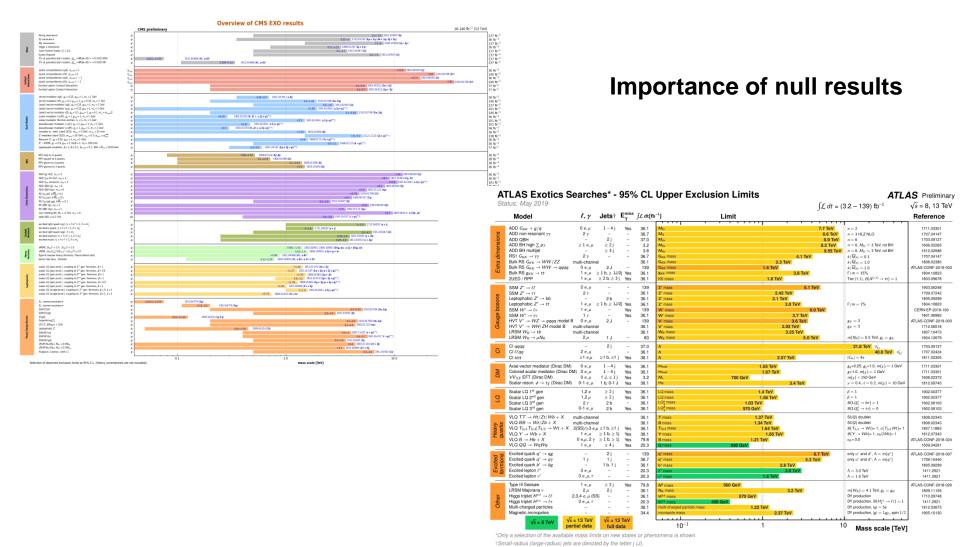
Strings and string motivated extensions

Two possibilities to search for BSM


Collision energy E > production thresholds

⇒New particles, new resonances

Z', W', π_T , ρ_T , KK states, squarks, sleptons, vector like fermions, excited states...


Collision energy E < production thresholds

Modification of SM decay widths and Br fractions, production cross sections, kinematical distributions

"New particle"

Many limits already in TeV energy range

Effective field theories – the way to proceed

The main idea – integrating out heavy degrees of freedom

UV full theory

 ϕ_H – heavy degrees of freedom , $M\phi_H \! \geq \! \Lambda$

 ϕ_L – light degrees of freedom , $M\phi_L$ << Λ

EFT

integrating out = integrating over

$$Z_{UV}[J_{L}\,,\,J_{H}] = \int \, [D\phi_{L}][D\phi_{H}] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right. \right. \\ \left. + J_{L} \, \phi_{L} + J_{H} \, \phi_{H} \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i \int d^{4}x \, \left[L_{UV}(\phi_{L},\,\phi_{H}) \right] \, \, exp \, \left[\, i$$

$$Z_{EFT}[J_L] = Z_{UV}[J_L, 0] = \int [D\phi_L] \exp [i \int d^4x [L_{EFT}(\phi_L) + J_L \phi_L]$$

$L_{EFT}(\phi_L)$ is a point like Lagrangian

Obvious for integrating out heavy bosons (like in integrating out W, Z in Fermi 4-fermion theory)

$$\mu = \begin{array}{c} v_{\mu} \\ \hline W^{-} \\ \hline v_{e} \end{array}$$

$$L = \frac{G_F}{\sqrt{2}}\bar{\mu}\gamma_{\sigma}(1-\gamma_5)\nu_{\mu}\bar{e}\gamma_{\sigma}(1-\gamma_5)\nu_e + h.e.$$

tree-generated [TG] operators

Arzt, C. M. B. Einhorn, and J. WudkaNucl. Phys. B 433, 41–66 (1995)

Less obvious for integrating out heavy fermions

The decoupling theorem

T. Appelquist, J. Carazzone, Phys. Rev. D11, 2856 (1975)

For any 1PI Feynman graph with external vector mesons only but containing internal fermions, when all external momenta (i.e. p²) are small relative to M², then apart from coupling constant and field strength renormalization the graph will be suppressed by some power of M relative to a graph with the same number of external vector mesons but no internal fermions.

> Einhorn, Martin, Wudka (2013), Nucl. Phys. B 876, 556-574

Example:
$$L_{QED} = \psi^{-}(i \gamma_{\mu}D^{\mu} - m_{e})\psi$$
, $D_{\mu} = \partial_{\mu} - ie A_{\mu}$

 $E_{\gamma} << m_e$, Lagrangian Euler-Heisenberg

$$L_{eff} = -1/4 \; F_{\mu\nu} F^{\mu\nu} + a/m_e^4 \; (F_{\mu\nu} F^{\mu\nu})^2 + b/m_e^4 \; (F_{\mu\nu} F^{\nu\alpha} \; F_{\alpha\beta} F^{\beta\mu})$$

loop-generated [LG] operators

Matching:
$$a = -\alpha^2/36$$
, $b = 7 \alpha^2/90$

Other operators do not appear from loops (zero matching coefficients)

SM Effective Field Theory (SMEFT)

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i,d>4} \frac{c_i^{(d)}(\mu)}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

c_i (d) - dimensionless coefficients

O_i ^(d) - operators constructed from SM fields preserving SM gauge invariance, and (optionally) other symmetries

S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979)

W. Buchmuller and D. Wyler, Nucl. Phys. B268, 621 (1986)

There is only one dim-5 operator which violates lepton number conservation (Weinberg operator). Corresponding Wilson coefficient is strongly suppressed

$$\left(\overline{L_{L\alpha}^c}\widetilde{H}^*\right)\left(\widetilde{H}^\dagger L_{L\beta}\right) + \text{h.c.} \qquad \textbf{C}^{(5)}/\Lambda \leq \textbf{10}^{-15} \text{ GeV}^{-1} \text{ from neutrino mass differences}$$

$$L_L = (\nu_L,\ell_L)^T \quad \widetilde{H} = i\sigma_2 H^*$$

Assumptions

- Lorenz and Poincare invariance, point like Lagrangian
- gauge group is the SM gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y$ with the BEH mechanism of electroweak symmetry breaking
- the only remaining degrees of freedom are the SM fields
- the scale of New physics $\Lambda >> v_{SM}$
- various assumptions on flavor structure (MVF, $U(3)^5$, $U(2)^5$...)

Several issues

Operator basis?

Squired terms $(1/\Lambda^2)^2$?

NLO corrections?

Unitarity and validity of computation for particular observables?

• • •

Operator basis

Operator basis, all operators allowed by the symmetries and then reduced using equations of motion (field redefinition), integration by parts identities, and Fierz transformations

At dimension-6 there are 59 (Warsaw basis) independent CP conserving operators for one generation of fermions excluding baryon and lepton number violating operators

(There are about 80 operators in the original Buchmuller-Wyler basis)

B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, JHEP 10 (2010) 085

Number gauge-invariant operators is 84 for 1 generation of fermions, 76 baryon- and lepton-number conserving operators, 59 CP conserving operators

B. Henning, X. Lu, T. Melia, and H. Murayama 1512.03433, JHEP 09, 019 (2019)

2499 dimension-6 operators for three generations (1350 of which CP-even and 1149 CP-odd) Global SMEFT fit will have to explore a huge parameter space with potentially a large number of flat directions.

R. Alonso, E. E. Jenkins, A. V. Manohar, and M. Trott, JHEP 04 (2014) 159

One can split all the operators on symmetry preserve (B and L number, FCNC) and symmetry violating sectors (much suppressed Wilson coefficients).

Simple example

Model:
$$L = \frac{1}{2} (\partial_{\mu} \varphi)^2 - \frac{1}{4} \lambda \varphi^4$$

Equation of motion: $\partial_{\mu} \partial^{\mu} \varphi + \lambda \varphi^{3} = 0$

Operators at D=6: φ^6 ; $(\partial^2 \varphi)^2$; $\varphi^2(\partial \varphi)^2$

How many independent operators?

Simple example

Model:
$$L = \frac{1}{2} (\partial_{\mu} \varphi)^2 - \frac{1}{4} \lambda \varphi^4$$

Equation of motion: $\partial_{\mu} \partial^{\mu} \varphi + \lambda \varphi^{3} = 0$

Operators at D=6: φ^6 ; $(\partial^2 \varphi)^2$; $\varphi^2(\partial \varphi)^2$

How many independent operators?

1.
$$(\partial^2 \phi)^2 - \lambda^2 \phi^6 = (\partial^2 \phi - \lambda \phi^3) (\partial^2 \phi + \lambda \phi^3) = 0$$

$$2. \ \ 0 = \partial^{\mu}(\phi \ \phi^2 \ \partial_{\mu}\phi) = \phi^2 \ (\partial_{\mu}\phi)^2 + \phi \ \partial^{\mu}(\phi^2 \ \partial_{\mu}\phi) \ = 3 \ \phi^2 \ (\partial\phi)^2 + \phi^3 \ \partial^2\phi = 3 \ \phi^2 \ (\partial\phi)^2 \ - \lambda \ \phi^6$$

Both operators $(\partial^2 \varphi)^2$ and $\varphi^2 (\partial \varphi)^2$ are equivalent to the operator $\lambda \varphi^6$

'Warsaw' basis

B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, JHEP 10 (2010) 085

15 4-boson operators; 19 2-boson&2-fermion operators

$1: X^{3}$		$2: H^6$		$3: H^4D^2$		$5: \psi^2 H^3 + \text{h.c.}$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H	$(H^{\dagger}H)^3$	$Q_{H\square}$	$(H^{\dagger}$	$H)\Box(H^{\dagger}H)$	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$
$Q_{\widetilde{G}}$.	$f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	·		Q_{HD}	$(H^{\dagger}D_{\mu}$	$(H)^* (H^\dagger D_\mu H)$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$
Q_W ϵ	$\epsilon^{IJK}W_{\mu}^{I u}W_{ u}^{J ho}W_{ ho}^{K\mu}$						Q_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H)$
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$							
	$4: X^2H^2$		$6:\psi^2XH$	+ h.c.		7	$V:\psi^2H^2H^2$	D
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p\sigma^{\mu\nu}\epsilon$	$(e_r)\sigma^I HW$	$\frac{I}{\mu\nu}$	$Q_{Hl}^{(1)}$	$(H^{\dagger}i\overleftarrow{I}$	$\overrightarrow{D}_{\mu}H)(\overline{l}_{p}\gamma^{\mu}l_{r})$
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p\sigma^{\mu u}$	$(e_r)HB_{\mu}$	ν	$Q_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}$	$(\bar{l}_p \sigma^I \gamma^\mu l_r)$
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T)$	$(\Gamma^A u_r)\widetilde{H}$	$\sigma^A_{\mu u}$	Q_{He}	$(H^{\dagger}i\overleftarrow{I}$	$\overrightarrow{\partial}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}_{\mu\nu}^{I}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u$	$(u_r)\sigma^I\widetilde{H}W$	$V^I_{\mu u}$	$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftarrow{I}$	$\overrightarrow{D}_{\mu}H)(\overline{q}_{p}\gamma^{\mu}q_{r})$
Q_{HB}	$H^{\dagger}HB_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu \iota})$	$(u_r)\widetilde{H} B_{\mu}$	$\iota \nu$	$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D})$	$_{\mu}^{I}H)(\bar{q}_{p}\sigma^{I}\gamma^{\mu}q_{r})$
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T)$	$(\Gamma^A d_r) H C$	$^{cA}_{\mu u}$	Q_{Hu}	$(H^{\dagger}i\overleftarrow{D}$	$\partial_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$
Q_{HWB}	$H^{\dagger}\sigma^{I}HW_{\mu\nu}^{I}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p\sigma^{\mu\nu}\sigma^{\nu}\sigma^{\mu\nu}\sigma^{\mu\nu}\sigma^{\mu\nu}\sigma^{\nu\nu}\sigma^{\mu\nu}\sigma^{\nu$	$(d_r)\sigma^I H W$	μu	Q_{Hd}	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{\partial}_{\mu}H)(\overline{d}_{p}\gamma^{\mu}d_{r})$
$Q_{H\widetilde{W}B}$	$H^{\dagger}\sigma^{I}H\widetilde{W}_{\mu\nu}^{I}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p\sigma^{\mu u}$	$^{\nu}d_{r})HB_{\mu}$	ıν	$Q_{Hud} + \text{h.c.}$	$i(\widetilde{H}^{\dagger}L$	$(\bar{u}_p \gamma^\mu d_r)$

25 4-fermion operators

	$8:(\bar{L}L)(\bar{L}L)$		$8:(\bar{R}R)(\bar{R}R)$		$8:(\bar{L}L)(\bar{R}R)$
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \sigma^I q_r)(\bar{q}_s \gamma^\mu \sigma^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \sigma^I l_r)(\bar{q}_s \gamma^\mu \sigma^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$
	'	$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$
			•	$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu T^A d_t)$

$$8: (\bar{L}R)(\bar{R}L) + \text{h.c.} \qquad 8: (\bar{L}R)(\bar{L}R) + \text{h.c.}$$

$$Q_{ledq} \mid (\bar{l}_p^j e_r)(\bar{d}_s q_{tj}) \qquad Q_{quqd}^{(1)} \mid (\bar{q}_p^j u_r) \epsilon_{jk}(\bar{q}_s^k d_t)$$

$$Q_{quqd}^{(8)} \mid (\bar{q}_p^j T^A u_r) \epsilon_{jk}(\bar{q}_s^k T^A d_t)$$

$$Q_{lequ}^{(1)} \mid (\bar{l}_p^j e_r) \epsilon_{jk}(\bar{q}_s^k u_t)$$

$$Q_{lequ}^{(3)} \mid (\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk}(\bar{q}_s^k \sigma^{\mu\nu} u_t)$$

The basis for dimension 8 operators: C. W. Murphy, JHEP 10, 174 (2020), 2005.00059; H.-L. Li et al., (2020), 2005.00008.

The basis for dimension 12 operators: R. V. Harlander, T. Kempkens, and M. C. Schaaf, Phys. Rev. D 108, 055020 (2023), 2305.06832.

SMEFT in the TOP sector

28 operators of dim 6 are involved directly to the top sector

Aguilar Saavedra et al., 1802.07237

2-Quark Operators (9)

4-Quark Operators (11)

$$\begin{split} O_{qq}^{1(ijkl)} &= (\bar{q}_i \gamma^\mu q_j) (\bar{q}_k \gamma_\mu q_l), \\ O_{qq}^{3(ijkl)} &= (\bar{q}_i \gamma^\mu \tau^I q_j) (\bar{q}_k \gamma_\mu \tau^I q_l), \\ O_{qu}^{1(ijkl)} &= (\bar{q}_i \gamma^\mu q_j) (\bar{u}_k \gamma_\mu u_l), \\ O_{qu}^{8(ijkl)} &= (\bar{q}_i \gamma^\mu T^A q_j) (\bar{u}_k \gamma_\mu T^A u_l), \\ O_{qd}^{8(ijkl)} &= (\bar{q}_i \gamma^\mu q_j) (\bar{d}_k \gamma_\mu d_l), \\ O_{qd}^{8(ijkl)} &= (\bar{q}_i \gamma^\mu q_j) (\bar{d}_k \gamma_\mu d_l), \\ O_{qd}^{8(ijkl)} &= (\bar{q}_i \gamma^\mu T^A q_j) (\bar{d}_k \gamma_\mu T^A d_l), \\ O_{uu}^{(ijkl)} &= (\bar{u}_i \gamma^\mu u_j) (\bar{u}_k \gamma_\mu u_l), \\ O_{ud}^{1(ijkl)} &= (\bar{u}_i \gamma^\mu u_j) (\bar{d}_k \gamma_\mu d_l), \\ O_{ud}^{8(ijkl)} &= (\bar{u}_i \gamma^\mu T^A u_j) (\bar{d}_k \gamma_\mu T^A d_l), \\ ^{\ddagger} O_{quqd}^{8(ijkl)} &= (\bar{q}_i u_j) \varepsilon (\bar{q}_k d_l), \\ ^{\ddagger} O_{quqd}^{8(ijkl)} &= (\bar{q}_i T^A u_j) \varepsilon (\bar{q}_k T^A d_l), \end{split}$$

2-Quark-2-Lepton Operators (8)

$$\begin{split} O_{lq}^{1(ijkl)} &= (\bar{l}_{i}\gamma^{\mu}l_{j})(\bar{q}_{k}\gamma^{\mu}q_{l}), \\ O_{lq}^{3(ijkl)} &= (\bar{l}_{i}\gamma^{\mu}\tau^{I}l_{j})(\bar{q}_{k}\gamma^{\mu}\tau^{I}q_{l}), \\ O_{lu}^{(ijkl)} &= (\bar{l}_{i}\gamma^{\mu}l_{j})(\bar{u}_{k}\gamma^{\mu}u_{l}), \\ O_{eq}^{(ijkl)} &= (\bar{e}_{i}\gamma^{\mu}e_{j})(\bar{q}_{k}\gamma^{\mu}q_{l}), \\ O_{eu}^{(ijkl)} &= (\bar{e}_{i}\gamma^{\mu}e_{j})(\bar{u}_{k}\gamma^{\mu}u_{l}), \\ ^{\dagger}O_{lequ}^{1(ijkl)} &= (\bar{l}_{i}e_{j}) \varepsilon (\bar{q}_{k}u_{l}), \\ ^{\dagger}O_{lequ}^{3(ijkl)} &= (\bar{l}_{i}\sigma^{\mu\nu}e_{j}) \varepsilon (\bar{q}_{k}\sigma_{\mu\nu}u_{l}), \\ ^{\dagger}O_{lequ}^{(ijkl)} &= (\bar{l}_{i}e_{j})(\bar{d}_{k}q_{l}), \end{split}$$

Notations $\mathcal{L} = \sum \left(\frac{C_a}{\Lambda^2} {}^{\ddagger} O_a + \text{h.c.} \right) + \sum \frac{C_b}{\Lambda^2} O_b$

In addition 5 baryon- and lepton-number-violating operators:

Squired terms $(1/\Lambda^2)^2$

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \sum_{j} \frac{C_{j}^{(8)}}{\Lambda^{4}} O_{j}^{(8)} + \dots$$

$$\sigma = \sigma^{\text{SM}} + \sum_{i} \left(\frac{c_{i}^{(6)}}{\Lambda^{2}} \sigma_{i}^{(6 \times \text{SM})} + \text{h.c.} \right) + \sum_{ij} \frac{c_{i}^{(6)} c_{j}^{(6)*}}{\Lambda^{4}} \sigma_{ij}^{(6 \times 6)} + \sum_{j} \left(\frac{c_{j}^{(8)}}{\Lambda^{4}} \sigma_{j}^{(8 \times \text{SM})} + \text{h.c.} \right) + \dots$$

- 1. Without an operator basis at dimension eight for the higher-dimensional contribution, it is not possible to calculate the full term of $1/\Lambda^4$, and it should thus be treated as an uncertainty.
- 2. In some cases, the interference between SM amplitudes and EFT ones could be suppressed (for instance, for certain helicities) or even vanishingly small (for instance, in the case of FCNCs). The dominant contribution could then arise at the quadratic level.
- 3. Repeat this procedure twice, with and without including the quadratic EFT contributions. The comparison between those two sets of results can explicitly establish where quadratic dimension-six EFT contributions are subleading compared to linear ones.

But the problem is even more involved since the SMEFT contributions come from production, from decay, and from the width in Breit-Wiegner denominator

SMEFT at NLO

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i,d>4} \frac{c_i^{(d)}(\mu)}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

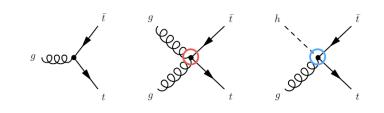
Wilson coefficients are the coupling constants of quantum field theory – SMEFT (running coupling constants)

EFT with Dim 6, 8 ... operators formally are not renormalizable. But the renormalization can be performed consistently in each order in $1/\Lambda^2$. Due the gauge invariance and other symmetries the counter-terms have the same structure as the original operators. Because of NLO (NNLO) QCD and EW corrections the operators are mixed.

M. Ghezzi, R. Gomez-Ambrosio, G. Passarino and S. Uccirati, 1505.03706 C. Hartmann and M. Trott, 1507.03568

59×59 anomalous dimension mixing matrix for the Wilson coefficients

E. E. Jenkins, A. V. Manohar and M. Trott, 1308.2627, 1310.4838

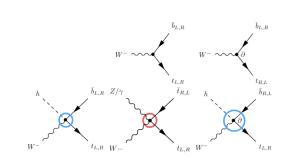

Directions of studies

- 1. Limits on Wilson coefficients of the operators contributing to certain process/processes
- 2. Global analysis (concrete operator may contribute to different processes, several operator may contribute to the same process)
- 3. Limits on a concrete set of operators following from a certain UV model

SMEFT operators lead to additional vertexes (i=j=3)

$$\mathcal{L}_{gtt} = -g_s \bar{t} \, \frac{\lambda^a}{2} \gamma^\mu t \, G^a_\mu - g_s \bar{t} \, \lambda^a \frac{i\sigma^{\mu\nu}q_\nu}{m_t} \left(d_V^g + id_A^g \gamma_5 \right) t \, G^a_\mu$$

$$^{\ddagger} O_{uG}^{(ij)} = \left(\bar{q}_i \sigma^{\mu\nu} T^A u_j \right) \, \tilde{\varphi} G^A_{\mu\nu}$$


$$\mathcal{L} = \frac{\mathcal{g}}{\sqrt{2}} \bar{\mathbf{b}} \gamma^{\mu} \left(f_{\mathbf{V}}^{\mathbf{L}} P_{\mathbf{L}} + f_{\mathbf{V}}^{\mathbf{R}} P_{\mathbf{R}} \right) \mathbf{t} W_{\mu}^{-} - \frac{\mathcal{g}}{\sqrt{2}} \bar{\mathbf{b}} \frac{\sigma^{\mu\nu} \partial_{\nu} W_{\mu}^{-}}{M_{\mathbf{W}}} \left(f_{\mathbf{T}}^{\mathbf{L}} P_{\mathbf{L}} + f_{\mathbf{T}}^{\mathbf{R}} P_{\mathbf{R}} \right) \mathbf{t} + \text{h.c.}$$

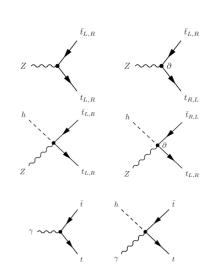
$$^{\dagger} O_{u\varphi}^{(ij)} = \bar{q}_{i} u_{j} \tilde{\varphi} \left(\varphi^{\dagger} \varphi \right),$$

$$^{\dagger} O_{\varphi ud}^{(ij)} = (\tilde{\varphi}^{\dagger} i D_{\mu} \varphi) (\bar{u}_{i} \gamma^{\mu} d_{j}),$$

$$^{\dagger} O_{uW}^{(ij)} = (\bar{q}_{i} \sigma^{\mu\nu} \tau^{I} u_{j}) \tilde{\varphi} W_{\mu\nu}^{I}$$

$$^{\dagger} O_{dW}^{(ij)} = (\bar{q}_{i} \sigma^{\mu\nu} \tau^{I} d_{j}) \varphi W_{\mu\nu}^{I}$$

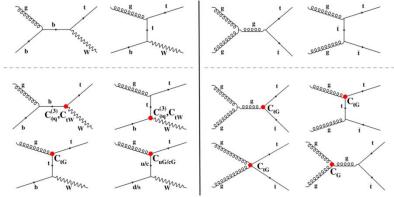
$$\mathcal{L}_{Ztt} = -\frac{g}{2c_W} \bar{t} \gamma^{\mu} \left(X_{tt}^L P_L + X_{tt}^R P_R - 2s_W^2 Q_t \right) t Z_{\mu}$$


$$-\frac{g}{2c_W} \bar{t} \frac{i\sigma^{\mu\nu} q_{\nu}}{M_Z} \left(d_V^Z + id_A^Z \gamma_5 \right) t Z_{\mu},$$

$$\mathcal{L}_{\gamma tt} = -eQ_t \bar{t} \gamma^{\mu} t A_{\mu} - e\bar{t} \frac{i\sigma^{\mu\nu} q_{\nu}}{m_t} \left(d_V^{\gamma} + id_A^{\gamma} \gamma_5 \right) t A_{\mu}$$

$$O_{\varphi q}^{1(ij)} = (\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi) (\bar{q}_i \gamma^{\mu} q_j), \quad ^{\dagger} O_{uW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau^I u_j) \tilde{\varphi} W_{\mu\nu}^I,$$

$$O_{\varphi q}^{3(ij)} = (\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi) (\bar{q}_i \gamma^{\mu} \tau^I q_j), \quad ^{\dagger} O_{uB}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} u_j) \quad \tilde{\varphi} B_{\mu\nu},$$


$$O_{\varphi u}^{(ij)} = (\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi) (\bar{u}_i \gamma^{\mu} u_j),$$

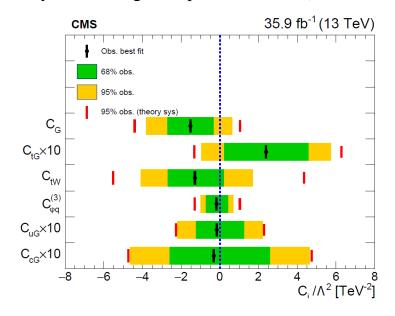
Top quark pair (tt) and single top quark in association with a W boson (tW)

tW tt

CMS 1903.11144

$$\sigma_{\rm SM}^{{
m t\bar t}} = 832^{+20}_{-29} \, ({
m scales}) \pm 35 \, ({
m PDF} + \alpha_S) \, {
m pb}$$

Kidonakis, 1506.04072 (NNLO)

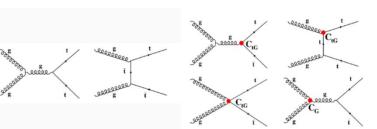

$$\sigma_{\rm SM}^{\rm tW} = 71.7 \pm 1.8 \, ({\rm scales}) \pm 3.4 \, ({\rm PDF} + \alpha_S) \, {\rm pb}$$

Durieux, Maltoni, Zhang, 1412.7166; Franzosi, Zhang, 1503.08841; Zhang, 1601.06163; CMS 1903.11144

	Contribution	C_{G}	$C_{\phi q}^{(3)}$	$C_{\rm tW}$	C_{tG}	C_{uG}	C_{cG}
	$\sigma_i^{(1)-\text{LO}}$	31.9 pb	_	_	137 pb	_	_
tīt	$K^{(1)}$	_	_	_	1.48	_	_
tt	$\sigma_i^{(2)-LO}$	102.3 pb	_	_	16.4 pb	_	_
	$K^{(2)}$	_	_	_	1.44		_
	$\sigma_i^{(1)-\text{LO}}$	_	6.7 pb	$-4.5\mathrm{pb}$	3.3 pb	0	0
tW	$K^{(1)}$	_	1.32	1.27	1.27	0	0
· · ·	$\sigma_i^{(2)-LO}$	_	0.2 pb	1 pb	1.2 pb	16.2 pb	4.6 pb
	$K^{(2)}$	_	1.31	1.18	1.06	1.27	1.27

$$\begin{split} O_{\phi q}^{(3)} &= (\phi^{+}\tau^{i}D_{\mu}\phi)(\overline{q}\gamma^{\mu}\tau^{i}q), \qquad \qquad L_{eff} = \frac{C_{\phi q}^{(3)}}{\sqrt{2}\Lambda^{2}}gv^{2}\overline{b}\gamma^{\mu}P_{L}tW_{\mu}^{-} + \text{h.c.}, \\ O_{tW} &= (\overline{q}\sigma^{\mu\nu}\tau^{i}t)\tilde{\phi}W_{\mu\nu}^{i}, \qquad \qquad L_{eff} = -2\frac{C_{tW}}{\Lambda^{2}}v\overline{b}\sigma^{\mu\nu}P_{R}t\partial_{\nu}W_{\mu}^{-} + \text{h.c.}, \\ O_{tG} &= (\overline{q}\sigma^{\mu\nu}\lambda^{a}t)\tilde{\phi}G_{\mu\nu}^{a}, \qquad \qquad L_{eff} = \frac{C_{tG}}{\sqrt{2}\Lambda^{2}}v\left(\overline{t}\sigma^{\mu\nu}\lambda^{a}t\right)G_{\mu\nu}^{a} + \text{h.c.}, \\ O_{G} &= f_{abc}G_{\mu}^{a\nu}G_{\nu}^{b\rho}G_{\rho}^{c\mu}, \qquad \qquad L_{eff} = \frac{C_{G}}{\Lambda^{2}}f_{abc}G_{\mu}^{a\nu}G_{\nu}^{b\rho}G_{\rho}^{c\mu}, \\ O_{u(c)G} &= (\overline{q}\sigma^{\mu\nu}\lambda^{a}t)\tilde{\phi}G_{\mu\nu}^{a}, \qquad \qquad L_{eff} = \frac{C_{u(c)G}}{\sqrt{2}\Lambda^{2}}v\left(\overline{u}\left(\overline{c}\right)\sigma^{\mu\nu}\lambda^{a}t\right)G_{\mu\nu}^{a} + \text{h.c.}, \end{split}$$

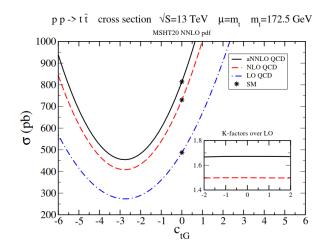
For the first time, both tt and tW production are used simultaneously in a model independent search for effective couplings in SMEFT approach (constraints presented, obtained by considering one operator at a time)

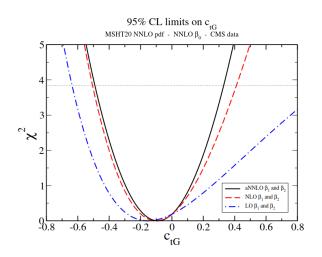

NLO, NNLO QCD corrections to top-quark pair production in the SMEFT

N.Kidonakis, A.Tonero 2309.16758

The chromomagnetic dipole operator

LO diagrams

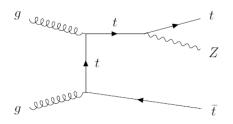



$$\sigma(c_{tG}) = \beta_0 + \frac{c_{tG}}{(\Lambda/1\text{TeV})^2} \beta_1 + \frac{c_{tG}^2}{(\Lambda/1\text{TeV})^4} \beta_2$$

K-factors at 13 TeV

$$\frac{\beta_0^{\rm NLO}}{\beta_0^{\rm LO}} = 1.50 \,, \qquad \qquad \frac{\beta_1^{\rm NLO}}{\beta_1^{\rm LO}} = 1.50 \,, \qquad \qquad \frac{\beta_2^{\rm NLO}}{\beta_2^{\rm LO}} = 1.49 \,$$

$$\frac{\beta_0^{\rm NNLO}}{\beta_0^{\rm LO}} = 1.67,$$
 $\frac{\beta_1^{\rm aNNLO}}{\beta_1^{\rm LO}} = 1.67,$ $\frac{\beta_2^{\rm aNNLO}}{\beta_2^{\rm LO}} = 1.66$



ttZ in SMEFT

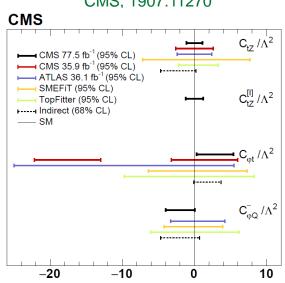
Bylund, Maltoni, Tsinikos, Vryonidou, Zhang, 1601.08193

Contributions in [fb]

13TeV	\mathcal{O}_{tG}	${\cal O}_{\phi Q}^{(3)}$	$\mathcal{O}_{\phi t}$	\mathcal{O}_{tW}
$\sigma_{i,LO}^{(1)}$	$286.7^{+38.2\%}_{-25.5\%}$	$78.3^{+40.4\%}_{-26.6\%}$	$51.6^{+40.1\%}_{-26.4\%}$	$-0.20(3)^{+88.0\%}_{-230.0\%}$
$\sigma^{(1)}_{i,NLO}$	$310.5^{+5.4\%}_{-9.7\%}$	$90.6^{+7.1\%}_{-11.0\%}$	$57.5^{+5.8\%}_{-10.3\%}$	$-1.7(2)^{+31.3\%}_{-49.1\%}$
K-factor	1.08	1.16	1.11	8.5
$\sigma^{(2)}_{i,LO}$	$258.5^{+49.7\%}_{-30.4\%}$	$2.8(1)^{+39.7\%}_{-26.9\%}$	$2.9(1)^{+39.7\%}_{-26.7\%}$	$20.9^{+44.3\%}_{-28.3\%}$
$\sigma_{i,NLO}^{(2)}$	$244.5^{+4.2\%}_{-8.1\%}$	$3.8(3)_{-14.4\%}^{+13.2\%}$	$3.9(3)^{+13.8\%}_{-14.6\%}$	$24.2^{+6.2\%}_{-11.2\%}$
$\sigma_{i,LO}^{(1)}/\sigma_{SM,LO}$	$0.376^{+0.3\%}_{-0.3\%}$	$0.103^{+1.9\%}_{-1.8\%}$	$0.0677^{+1.7\%}_{-1.6\%}$	$-0.00026(4)_{-167.2\%}^{+89.5\%}$
$\sigma_{i,NLO}^{(1)}/\sigma_{SM,NLO}$	$0.353^{+1.3\%}_{-2.4\%}$	$0.103^{+0.7\%}_{-0.8\%}$	$0.0654^{+1.1\%}_{-2.1\%}$	$-0.0020(2)_{-38.0\%}^{+22.9\%}$
$\sigma_{i,LO}^{(2)}/\sigma_{i,LO}^{(1)}$	$0.902^{+8.4\%}_{-6.7\%}$	$0.036(1)_{-1.1\%}^{+0.2\%}$	$0.056(2)_{-0.3\%}^{+0.6\%}$	$-104(16)^{+60.8\%}_{-815.2\%}$
$\sigma_{i,NLO}^{(2)}/\sigma_{i,NLO}^{(1)}$	$0.787^{+3.3\%}_{-12.8\%}$	$0.042(4)^{+5.6\%}_{-3.9\%}$	$0.067(6)^{+7.6\%}_{-4.8\%}$	$-14(1)^{+29.0\%}_{-29.1\%}$

$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_i}{(\Lambda/1\text{TeV})^2} \sigma_i^{(1)} + \sum_{i \le j} \frac{C_i C_j}{(\Lambda/1\text{TeV})^4} \sigma_{ij}^{(2)}$$

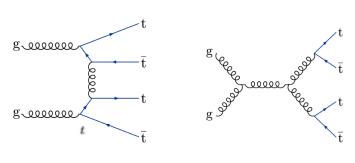
CMS, 1907.11270

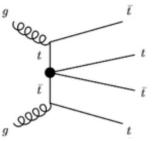

Contributing operator combinations (not restricted from other searches)

$$c_{tZ} = \text{Re} \left(-\sin \theta_{W} C_{uB}^{(33)} + \cos \theta_{W} C_{uW}^{(33)} \right)$$

$$c_{tZ}^{[I]} = \text{Im} \left(-\sin \theta_{W} C_{uB}^{(33)} + \cos \theta_{W} C_{uW}^{(33)} \right)$$

$$c_{\phi t} = C_{\phi t} = C_{\phi u}^{(33)}$$


$$c_{\phi O}^{-} = C_{\phi Q} = C_{\phi q}^{1(33)} - C_{\phi q}^{3(33)},$$



tttt in SMEFT

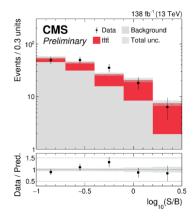
Relevant set of 4 top operators

$$\begin{split} \mathcal{O}_{tt}^{1} &= (\overline{t}_{R} \gamma^{\mu} t_{R}) \left(\overline{t}_{R} \gamma_{\mu} t_{R} \right), \\ \mathcal{O}_{QQ}^{1} &= \left(\overline{Q}_{L} \gamma^{\mu} Q_{L} \right) \left(\overline{Q}_{L} \gamma_{\mu} Q_{L} \right), \\ \mathcal{O}_{Qt}^{1} &= \left(\overline{Q}_{L} \gamma^{\mu} Q_{L} \right) \left(\overline{t}_{R} \gamma_{\mu} t_{R} \right), \\ \mathcal{O}_{Qt}^{8} &= \left(\overline{Q}_{L} \gamma^{\mu} T^{A} Q_{L} \right) \left(\overline{t}_{R} \gamma_{\mu} T^{A} t_{R} \right) \end{split}$$

Alwall et al.,1405.0301

NLO cross section $\sigma_{t\bar{t}t\bar{t}}^{SM} = 9.2 \, \text{fb}$

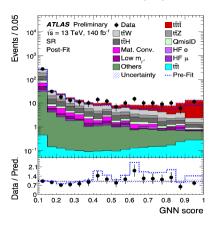
CMS, 1906.02805


$$\sigma_{t\bar{t}t\bar{t}} = \sigma_{t\bar{t}t\bar{t}}^{SM} + \frac{1}{\Lambda^{2}} \sum_{k} C_{k} \sigma_{k}^{(1)} + \frac{1}{\Lambda^{4}} \sum_{j \leq k} C_{j} C_{k} \sigma_{j,k}^{(2)}$$

$$\frac{\sigma_{k}^{(1)}}{\sigma_{k}^{(1)}} \left| \begin{array}{ccc} \sigma_{k}^{(1)} & \sigma_{QQ}^{(2)} & \sigma_{j,k}^{(2)} & \sigma_{j,k}^{(2)} \\ \sigma_{j,k}^{(1)} & \sigma_{QQ}^{(1)} & \sigma_{j,k}^{(2)} & \sigma_{Qt}^{(2)} \\ \hline \sigma_{tt}^{(1)} & 0.39 & 5.59 & 0.36 & -0.39 & 0.3 \\ \hline \sigma_{QQ}^{1} & 0.47 & 5.49 & -0.45 & 0.13 \\ \hline \sigma_{Qt}^{1} & 0.03 & 1.9 & -0.08 \\ \hline \sigma_{Qt}^{8} & 0.28 & 0.45 \\ \hline \end{array}$$

95% CL intervals for Wilson coefficients

Operator	Expected C_k/Λ^2 (TeV ⁻²)	Observed (TeV ⁻²)
\mathcal{O}^1_{tt}	[-2.0, 1.8]	[-2.1, 2.0]
$\mathcal{O}_{\mathrm{QQ}}^{1}$	[-2.0, 1.8]	[-2.2, 2.0]
$\mathcal{O}^1_{\mathrm{Qt}}$	[-3.3, 3.2]	[-3.5, 3.5]
$\mathcal{O}_{\mathrm{Qt}}^{8}$	[-7.3, 6.1]	[-7.9, 6.6]


\sqrt{s} (TeV)	$\sigma^{ m NLO}_{tar{t}tar{t}}$ (fb)	$\sigma_{tar{t}tar{t}}^{ ext{NLO+NLL}}$ (fb)	$\sigma_{tar{t}tar{t}}^{ ext{NLO+NLL'}}$ (fb)	$ m K_{NLL'}$
13	$11.00(2)^{+25.2\%}_{-24.5\%}$ fb	$11.46(2)^{+21.3\%}_{-17.7\%}$ fb	$12.73(2)^{+4.1\%}_{-11.8\%}$ fb	1.16
13.6	$13.14(2)^{+25.1\%}_{-24.4\%}$ fb	$13.81(2)^{+20.7\%}_{-20.1\%}$ fb	$15.16(2)_{-11.9\%}^{+2.5\%}$ fb	1.15
$\sqrt{s} \; (\text{TeV})$	$\sigma_{t\bar{t}t\bar{t}}^{ ext{NLO(QCD+EW)}}$ (fb)	$\sigma_{tar{t}tar{t}}^{ m NLO(QCD+EW)+NLL}$ (fb)	$\sigma_{t ar{t} t ar{t}}^{ ext{NLO(QCD+EW)+NLL'}}$ (fb)	$K_{\mathrm{NLL'}}$
13	$11.64(2)^{+23.2\%}_{-22.8\%}$ fb	$12.10(2)^{+19.5\%}_{-16.3\%}$ fb	$13.37(2)^{+3.6\%}_{-11.4\%}$ fb	1.15
13.6	$13.80(2)^{+22.6\%}_{-22.9\%}$ fb	$14.47(2)^{+18.5\%}_{-19.1\%}$ fb	$15.82(2)^{+1.5\%}_{-11.6\%}$ fb	1.15

CMS PAS TOP-22-013

$$\sigma(pp \to t\bar{t}t\bar{t}) = 17.9^{+3.7}_{-3.5} \text{ (stat)} ^{+2.4}_{-2.1} \text{ (syst) fb}$$

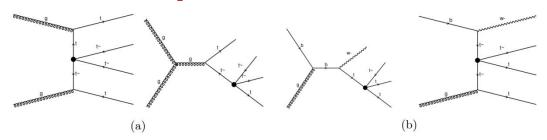
~5.5 \(\sigma\)

5.5 (4.9) σ observed (expected)

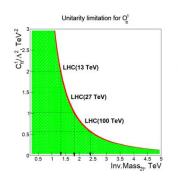
 $\sigma_{\rm t\bar{t}t\bar{t}} = 22.5^{\,+6.6}_{\,-5.6}$

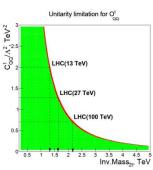
ATLAS 2303.15061

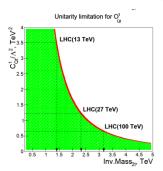
 $\sim 6.1 \sigma$

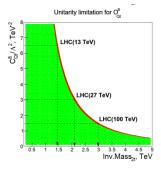

4 top discovery

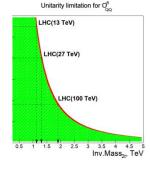
6.1 (4.3) σ observed (expected)


4tops and 3tops


E.B., L.Dudko 2107.07629; A.Aleshko, E.B., V.Bunichev, L.Dudko 2309.12514


$$\begin{split} O_{tt}^1 &= (\bar{t}_R \gamma^\mu t_R) (\bar{t}_R \gamma_\mu t_R), \\ O_{QQ}^1 &= (\bar{Q}_L \gamma^\mu Q_L) (\bar{Q}_L \gamma_\mu Q_L), \\ O_{Qt}^1 &= (\bar{Q}_L \gamma^\mu Q_L) (\bar{t}_R \gamma_\mu t_R), \\ O_{Qt}^8 &= (\bar{Q}_L \gamma^\mu T^A Q_L) (\bar{t}_R \gamma_\mu T^A t_R), \\ O_{QQ}^8 &= (\bar{Q}_L \gamma^\mu T^A Q_L) (\bar{Q}_L \gamma_\mu T^A Q_L), \end{split}$$

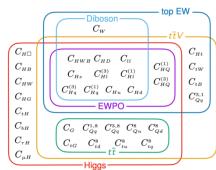



Partial wave unitarity bounds $|a_0| = C_i/\Lambda^2 \cdot k_i \cdot M_{tt} < \frac{1}{2}$

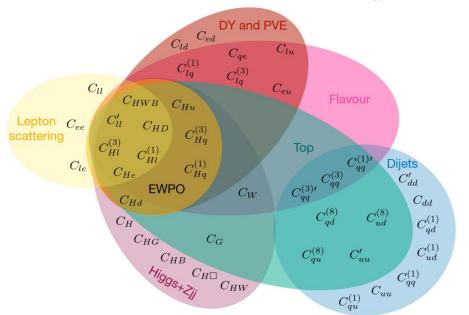
13 TeV, 138 fb⁻¹

model	C^1_{tt}	C^1_{QQ}	C^1_{Qt}	C_{Qt}^8	C_{QQ}^8
4t,nocut,1D	[-1.1,1.1]	[-2.2,2.1]	[-2.0,2.0]	[-5.7, 4.6]	[-5.0,4.8]
$_{ m 4t,cut,1D}$	[-1.2,1.2]	[-2.4, 2.3]	[-2.2,2.2]	[-6.8, 5.0]	[-6.0, 5.7]
3t,nocut, $1D$	[-3.7, 3.7]	[-2.5, 2.9]	[-2.6, 2.7]	[-5.3, 5.6]	[-5.1,6.1]
3t, cut, 1D	[-4.3, 4.2]	[-2.9, 3.2]	[-3.1, 3.2]	[-6.9, 7.3]	[-6.4, 7.7]
3+4t,nocut,1D	[-1.1,1.0]	[-2.0, 2.0]	[-1.8, 1.8]	[-4.7,4.2]	[-4.2, 4.5]
3+4t,cut,1D	[-1.2,1.2]	[-2.2,2.2]	[-2.1, 2.1]	[-5.8, 4.8]	[-5.2, 5.4]
4t,nocut,5D	[-0.95, 0.90]	[-1.8, 1.7]	[-1.6, 1.6]	[-4.8, 3.6]	[-4.2, 4.0]
$_{ m 4t,cut,5D}$	[-1.0, 1.0]	[-2.0, 1.9]	[-1.8, 1.9]	[-5.7, 4.1]	[-4.6, 4.4]
3t,nocut,5D	[-3.1,3.0]	[-2.0, 2.4]	[-2.1, 2.2]	[-4.3, 4.6]	[-4.2, 5.1]
3t,cut,5D	[-3.5, 3.4]	[-2.3, 2.7]	[-2.5, 2.7]	[-5.6, 6.1]	[-5.1,6.5]
3+4t,nocut,5D	[-0.95, 0.90]	[-1.6, 1.6]	[-1.5, 1.5]	[-4.0,3.3]	[-3.5, 3.7]
3+4t,cut,5D	[-1.0,1.0]	[-1.8, 1.8]	[-1.7, 1.7]	[-4.8, 3.8]	[-4.1, 4.3]

Expected 1D limits with unitary cuts

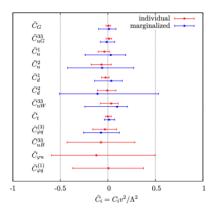

Energy, model	C^1_{tt}	C^1_{QQ}	C^1_{Qt}	C_{Qt}^8	C_{QQ}^8
13 TeV, 4t	[-1.2, 1.2]	[-2.4, 2.3]	[-2.2, 2.2]	[-6.8, 5.0]	[-6.0, 5.7]
13 TeV, 3t	[-4.3, 4.2]	[-2.9, 3.2]	[-3.1, 3.2]	[-6.9, 7.3]	[-6.4, 7.7]
13 TeV, 3+4t	[-1.2, 1.2]	[-2.2, 2.2]	[-2.1, 2.1]	[-5.8, 4.8]	[-5.2, 5.4]
14 TeV, 4t	[-1.1, 1.0]	[-2.1, 2.0]	[-1.9, 1.9]	[-5.8, 4.2]	[-5.2, 4.9]
14 TeV, 3t	[-2.5, 2.5]	[-1.6, 2.0]	[-1.8, 1.9]	[-3.9, 4.4]	[-3.7, 5.1]
14 TeV, 3+4t	[-1.1, 1.0]	[-1.5, 1.7]	[-1.5, 1.6]	[-3.8, 3.6]	[-3.5, 4.3]
27 TeV, 4t	[-0.90, 0.83]	[-1.7, 1.6]	[-1.6, 1.6]	[-4.9, 3.6]	[-4.4, 4.2]
27 TeV, 3t	[-2.0, 2.0]	[-1.3, 1.5]	[-1.4, 1.6]	[-3.3, 3.9]	[-2.7, 4.1]
27 TeV, 3+4t	[-0.88, 0.83]	[-1.2, 1.3]	[-1.3, 1.3]	[-3.2, 3.2]	[-2.6, 3.5]
100 TeV, 4t	[-0.68, 0.66]	[-1.3, 1.3]	[-1.2, 1.2]	[-3.8, 3.0]	[-3.7, 3.6]
100 TeV, 3t	[-1.3, 1.4]	[-0.89, 1.0]	[-1.0, 1.1]	[-2.1, 2.6]	[-1.8, 2.7]
100 TeV, 3+4t	[-0.67, 0.64]	[-0.85, 0.94]	[-0.93, 0.94]	[-2.1, 2.3]	[-1.8, 2.5]

(concrete operator may contribute to different processes, several operator may contribute to the same process)


Bounds on SMEFT Wilson coefficients at leading order and next-to-leading order

Constraints from

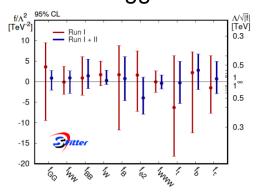
- electroweak precision observables (EWPO) (Z-pole)
- lepton scattering (WW)
- Higgs, top, flavour, dijet, Drell-Yan, Diboson
- measurements from parity violation experiments (PEV)



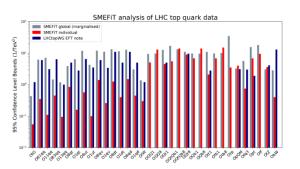
Bartocci, Biekoetter, Hurth 2311.04963

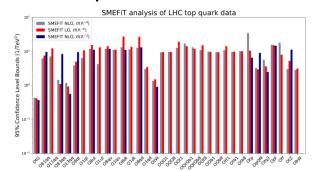
TopFitter

Buckley, Englert, Ferrando, Miller, Moore, Russell, White, 1512.03360 Top pair, single-top production, ttZ/γ from the LHC run I and II and Tevatron

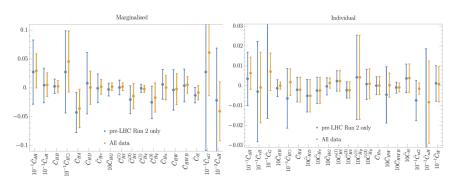


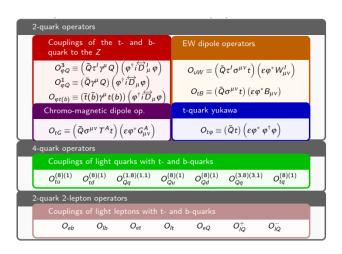
SMEFIT

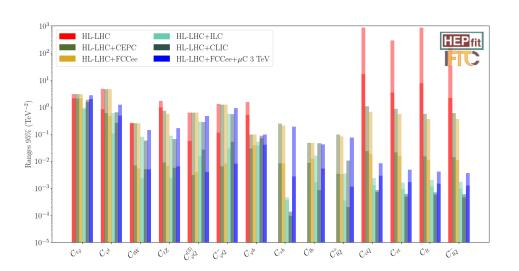

Hartland, *Maltoni, Nocera, Rojo,* Slade, Vryonidou, Zhang, 1901.05965


Sfitter

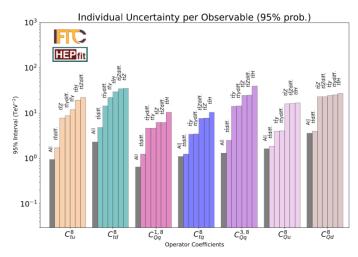
Biekoetter, Corbett, Plehn, 1812.07587 Global fits to the SMEFT from the Higgs sector.


Global fits to the SMEFT from the top sector.




Global SMEFT Fit to Higgs, Diboson and Electroweak Data

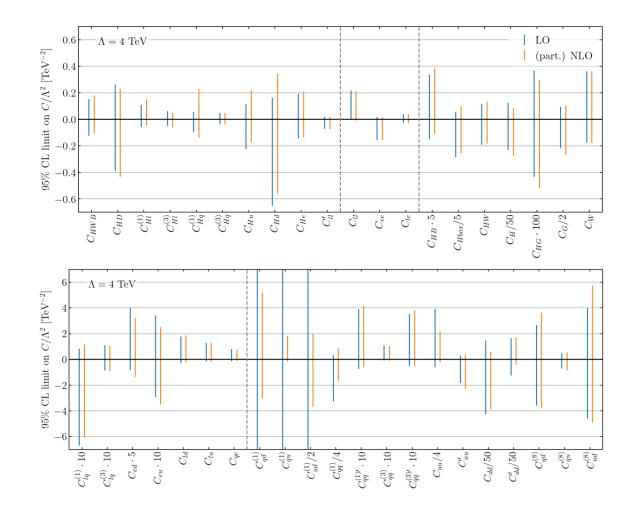
Ellisa, Murphyc, Sanzd, Youe, 1803.03252


The top-quark sector in the global SMEFT fit

F. Cornet-Gómez, Marcos Miralles López, María Moreno Llácer, Marcel Vos 2205.02140 Blasa, Duc, Grojean et. al Contribution to Snowmass 2021, 2206.08326v5

Process	Observable	\sqrt{s}	$\int \mathscr{L}$	Experiment
$pp ightarrow t ar{t}$	$d\sigma/dm_{t\bar{t}}$ (15+3 bins)	13 TeV	$140 \; { m fb}^{-1}$	CMS
pp o tar t	$dA_C/dm_{t\bar{t}}$ (4+2 bins)	13 TeV	$140 \; { m fb}^{-1}$	ATLAS
$pp ightarrow t ar{t} Z$	$d\sigma/dp_T^Z$ (8 bins)	13 TeV	$140 \; { m fb}^{-1}$	ATLAS
$pp o tar t\gamma$	$d\sigma/dp_T^{\gamma}$ (11 bins)	13 TeV	$140 \; { m fb}^{-1}$	ATLAS
$pp ightarrow t ar{t} H$	$d\sigma/dp_T^H$ (6 bins)	13 TeV	$140 \; { m fb}^{-1}$	ATLAS
pp o tZq	σ	13 TeV	$77.4 \; \mathrm{fb^{-1}}$	CMS
$pp ightarrow t \gamma q$	σ	13 TeV	$36 \; { m fb}^{-1}$	CMS
$pp ightarrow t ar{t} W$	σ	13 TeV	$36 \; { m fb}^{-1}$	CMS
$pp ightarrow tar{b}$ (s-ch)	σ	8 TeV	$20 \; { m fb}^{-1}$	LHC
pp o tW	σ	8 TeV	$20 \; { m fb}^{-1}$	LHC
pp o tq (t-ch)	σ	8 TeV	$20 \; { m fb}^{-1}$	LHC
t o Wb	F_0, F_L	8 TeV	$20 \; { m fb}^{-1}$	LHC
par p o tar b (s-ch)	σ	1.96 TeV	$9.7 \; { m fb^{-1}}$	Tevatron
$e^-e^+ o bar{b}$	R_b , A_{FBLR}^{bb}	\sim 91 GeV	$202.1~{ m pb}^{-1}$	LEP/SLD

a single-parameter fit - solid bars; the global or marginalised bounds full bars (shaded region in each bar)


Flavor symmetry assumption for dim 6 operators:

$$U(3)^5 = U(3)_{\ell} \times U(3)_{q} \times U(3)_{e} \times U(3)_{u} \times U(3)_{d}$$

2499 operators → 47 operators 41 (CP even) + 6 (CP odd)

Comparison of limits at LO and NLO

Bartocci, Biekoetter, Hurth 2311.04963

From UV theory to SMEFT

Number of SMEFT operators is huge.

EFT Lagrangian from the concrete UV model contains much less operators

Example:
$$L_{QED} = \psi^{-}(i \gamma_{\mu} D^{\mu} - m_{e})\psi$$
, $D_{\mu} = \partial_{\mu} - ie A_{\mu}$

$$E_{\gamma} << m_e$$
 , Lagrangian Euler-Heisenberg loop-generated [LG] operators

$$L_{eff} = \text{-}1/4 \; F_{\mu\nu} F^{\mu\nu} + a/m_e^{\; 4} \; (F_{\mu\nu} F^{\mu\nu})^2 + b/m_e^{\; 4} \; (F_{\mu\nu} F^{\nu\alpha} \; F_{\alpha\beta} F^{\beta\mu})$$

Matching:
$$a = -\alpha^2/36$$
, $b = 7\alpha^2/90$ Other operators do not appear from loops (zero matching coefficients)

Off-shell matching – effective actions of light degrees of freedom are the same (mostly used in practice)

$$\Gamma_{\text{UV}}[\varphi] = \Gamma_{\text{SMEFT}}[\varphi]$$

On-shell matching – S-matrix elements (amplitudes) are the same

$$<\phi_{in}|$$
 S_{UV} $|\phi_{out}>$ $=$ $<\phi_{in}|$ S_{SMEFT} $|\phi_{out}>$

$$\mathcal{L}_{Z'} = -\frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + \frac{1}{2} M_{Z'}^2 Z'_{\mu} Z'^{\mu} - \frac{\epsilon}{2} B_{\mu\nu} Z'^{\mu\nu} + (g_{H,2})^2 Z'_{\mu} Z'^{\mu} |H^{\dagger} H| - Z'_{\mu} \mathcal{J}^{\mu}$$

$$\mathcal{J}^{\mu} = (ig_H) \left(H^{\dagger} \overrightarrow{D}^{\mu} H \right) + \sum_{f} \left(g_{ij}^{fL} \bar{f}_L^i \gamma^{\mu} f_L^j + g_{ij}^{fR} \bar{f}_R^i \gamma^{\mu} f_R^j \right)$$

After Integrating out Z'

$$\delta \mathcal{L} = -\frac{1}{2M_{Z'}^2} \left(\mathcal{J}_{\mu} + \epsilon j_{\mu} \right)^2$$

$$-\frac{1}{2M_{Z'}^4} \left(1 - \epsilon^2 \right) \left[\partial_{\mu} \left(\mathcal{J}_{\nu} + \epsilon j_{\nu} \right) \right]^2 + \frac{1}{M_{Z'}^4} \left(g_{H,2}^2 + \frac{g'^2 \epsilon^2}{4} \right) \left(H^{\dagger} H \right) \left(\mathcal{J}_{\mu} + \epsilon j_{\mu} \right)^2$$

$$j_{\mu} = \frac{ig'}{2} \left(H^{\dagger} \overrightarrow{D}^{\mu} H \right) + g' \sum_{f} Y_f \bar{f} \gamma^{\mu} f$$

Matching with SMEFT operators of dim 6

$$\begin{split} \frac{C_{ll}[ijkl]}{\Lambda^{2}} &= -\frac{1}{2M_{Z'}^{2}}(g_{ij}^{lL} + \epsilon g'Y_{l}\delta_{ij})(g_{kl}^{lL} + \epsilon g'Y_{l}\delta_{kl}), \\ \frac{C_{lq}^{(1)}[ijkl]}{\Lambda^{2}} &= -\frac{1}{M_{Z'}^{2}}(g_{ij}^{lL} + \epsilon g'Y_{l}\delta_{ij})(g_{kl}^{qL} + \epsilon g'Y_{q}\delta_{kl}), \\ \frac{C_{qq}^{(1)}[ijkl]}{\Lambda^{2}} &= -\frac{1}{2M_{Z'}^{2}}(g_{ij}^{qL} + \epsilon g'Y_{q}\delta_{ij})(g_{kl}^{qL} + \epsilon g'Y_{q}\delta_{kl}). \\ \frac{C_{lf}[ijkl]}{\Lambda^{2}} &= -\frac{1}{M_{Z'}^{2}}(g_{ij}^{lL} + \epsilon g'Y_{l}\delta_{ij})(g_{kl}^{fR} + \epsilon g'Y_{f}\delta_{kl}), \\ \frac{C_{qf}^{(1)}[ijkl]}{\Lambda^{2}} &= -\frac{1}{M_{Z'}^{2}}(g_{ij}^{qL} + \epsilon g'Y_{q}\delta_{ij})(g_{kl}^{fR} + \epsilon g'Y_{f}\delta_{kl}). \\ \frac{C_{\varphi\Box}}{\Lambda^{2}} &= \frac{1}{8M_{Z'}^{2}}(2g_{H} + \epsilon g')^{2}, \\ \frac{C_{\varphi\Box}}{\Lambda^{2}} &= \frac{1}{2M_{Z'}^{2}}(2g_{H} + \epsilon g')^{2}. \end{split}$$

$$\frac{C_{ff}[ijkl]}{\Lambda^{2}} = -\frac{1}{2M_{Z'}^{2}}(g_{ij}^{fR} + \epsilon g'Y_{f}\delta_{ij})(g_{kl}^{fR} + \epsilon g'Y_{f}\delta_{kl}),$$

$$\frac{C_{ff'}[ijkl]}{\Lambda^{2}} = -\frac{1}{M_{Z'}^{2}}(g_{ij}^{fR} + \epsilon g'Y_{f}\delta_{ij})(g_{kl}^{f'R} + \epsilon g'Y_{f'}\delta_{kl}),$$

$$\frac{C_{ud}^{(1)}[ijkl]}{\Lambda^{2}} = -\frac{1}{M_{Z'}^{2}}(g_{ij}^{uR} + \epsilon g'Y_{u}\delta_{ij})(g_{kl}^{dR} + \epsilon g'Y_{d}\delta_{kl}).$$

$$\frac{C_{\varphi l}^{(1)}[ij]}{\Lambda^{2}} = -\frac{1}{2M_{Z'}^{2}}(2g_{H} + \epsilon g')(g_{ij}^{lL} + \epsilon g'Y_{l}\delta_{ij}),$$

$$\frac{C_{\varphi q}^{(1)}[ij]}{\Lambda^{2}} = -\frac{1}{2M_{Z'}^{2}}(2g_{H} + \epsilon g')(g_{ij}^{qL} + \epsilon g'Y_{q}\delta_{ij}),$$

$$\frac{C_{\varphi f}[ij]}{\Lambda^{2}} = -\frac{1}{2M_{Z'}^{2}}(2g_{H} + \epsilon g')(g_{ij}^{fL} + \epsilon g'Y_{f}\delta_{ij}).$$

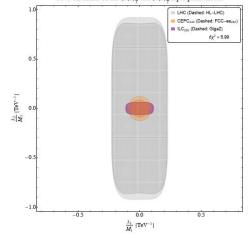
+ More operators of dim 8

The scalar leptoquarks S₁ and S₃

$$S_1 \sim (\bar{\bf 3}, {\bf 1})_{\frac{1}{3}}$$
 and $S_3 \sim (\bar{\bf 3}, {\bf 3})_{\frac{1}{3}}$

Gherardia, Marzoccab, Venturini 2003.12525

$$\mathcal{L}_{LQ} = |D_{\mu}S_{1}|^{2} + |D_{\mu}S_{3}|^{2} - M_{1}^{2}|S_{1}|^{2} - M_{3}^{2}|S_{3}|^{2} + ((\lambda^{1L})_{i\alpha}\bar{q}_{i}^{c}\epsilon\ell_{\alpha} + (\lambda^{1R})_{i\alpha}\bar{u}_{i}^{c}e_{\alpha}) S_{1} + (\lambda^{3L})_{i\alpha}\bar{q}_{i}^{c}\epsilon\sigma^{I}\ell_{\alpha}S_{3}^{I} + \text{h.c.} +$$


Tree level matching conditions after Integrating out leptoquarks

$$\begin{bmatrix} c_{lq}^{(1)} \end{bmatrix}_{\alpha\beta ij} = \frac{\lambda_{i\alpha}^{1L*} \lambda_{j\beta}^{1L} v^{2}}{4M_{1}^{2}} + \frac{3\lambda_{i\alpha}^{3L*} \lambda_{j\beta}^{3L} v^{2}}{4M_{3}^{2}}, \quad \begin{bmatrix} c_{lq}^{(3)} \end{bmatrix}_{\alpha\beta ij} = -\frac{\lambda_{i\alpha}^{1L*} \lambda_{j\beta}^{1L} v^{2}}{4M_{1}^{2}} + \frac{\lambda_{i\alpha}^{3L*} \lambda_{j\beta}^{3L} v^{2}}{4M_{3}^{2}}, \\
\begin{bmatrix} c_{lequ}^{(1)} \end{bmatrix}_{\alpha\beta ij} = \frac{\lambda_{j\beta}^{1R} \lambda_{i\alpha}^{1L*} v^{2}}{2M_{1}^{2}}, \quad \begin{bmatrix} c_{lequ}^{(3)} \end{bmatrix}_{\alpha\beta ij} = -\frac{\lambda_{j\beta}^{1R} \lambda_{i\alpha}^{1L*} v^{2}}{8M_{1}^{2}}, \quad [c_{eu}]_{\alpha\beta ij} = \frac{\lambda_{i\alpha}^{1R*} \lambda_{j\beta}^{1R} v^{2}}{2M_{1}^{2}}.$$

$$\mathbf{c} = \mathbf{C}/\Lambda^{2}$$

In the universal Yukawa these five Wilson coefficients only depend on two ratios:

 λ_1/M_1 and λ_3/M_3

Blasa, Duc, Grojean et. al Contribution to Snowmass 2021, 2206.08326

Global 4-fermion fit:

Concluding remarks

In the absence (so far) of any manifestation of BSM physics at the LHC, the Standard Model Effective Field Theory (SMEFT) is the consistent theoretical framework to go beyond the SM in model independent way allowing to perform systematically experimental data analyses.

SMEFT allows to compute consistently higher order perturbative corrections. Several NLO (NNLO) computations in SMEFT have been done. NLO (NNLO) corrections not only significantly reduce the scale uncertainties, but also allow more accurate obtain the shapes of differential distributions.

Without SMEFT it is challenging to compare limits predicted in various theoretical studies and/or obtained at various experiments.

Concrete BSM extensions lead to certain operators with possibly predicted ratios between their strengths based on a matching procedure.

Lot of studies are in progress and remain to be done

Reviews

Brivio, Trott Phys.Rept. (2019)

Boos Phys.Usp. (2022)

Falkowski EPJ C (2023)

Isidori, Wilsch, Wyler Rev.Mod.Phys. (2024)

. . .

Thank you!