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Introduction: The holographic principle

Holographic principle (1993): Duality
between a strongly coupled quantum-
mechanical system with many degrees of
freedom and a gravity theory (the bulk)

Prototype: AdS/CFT duality (1997)

Anti-de Sitter AdSd+1 is the maximally
symmetric d + 1 space with negative
constant curvature and a d-dimensional
flat space boundary: Minkowski
spacetime

ds2 = gMNdx
MdxN

=
R2

z2

(
dx2µ − dz2

)
Ideal tool to describe QCD in the IR with an infinite number of degrees of freedom

But maximal AdS space implies a Conformal Field Theory in its asymptotic boundary,
therefore no discrete spectrum

To introduce an IR scale and confinement in the gravity dual the constant curvature of
AdS should be modified the large z region

Note: z is the holographic coordinate and R is the AdS radius
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Front-form QCD and the gauge/gravity duality
Front-form QCD: The boundary theory

Light-front (LF) quantization uses the null plane x+ = x0 + x3 = 0
tangent to the light cone (Dirac 1949), thus without reference to a
specific Lorentz frame
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Evolution in LF time x+ is given by the Hamiltonian equation

i
∂

∂x+
|ψ⟩ = P−|ψ⟩, P−|ψ⟩ =

P2
⊥ +M2

P+
|ψ⟩,

for a hadron with 4-momentum P = (P+,P−,P⊥), P± = P0 ± P3, where P− is a
dynamical generator (it contains the interactions) and P+ and P⊥ are kinematical

Hadron mass spectra from LF invariant Hamiltonian P2 = PµPµ = P+P−− P2
⊥

P2|ψ(P)⟩ = M2|ψ(P)⟩, |ψ⟩ =
∞∑
n

ψn|n⟩

The LF Fock expansion is the sum of the N-parton states above the valence state

|ψ⟩p = ψuud/p |uud⟩+ ψuudg/p |uudg⟩+ ψuudqq̄/p |uudqq̄⟩+ ψuudggg |uudggg⟩+ · · ·

Constituent Counting Rules (1973): determine the valence quark configuration at high
momentum transfer (Brodsky, Farrar and Matveev, Muradian, Tavkhelidze)

In the IR the valence configuration is no longer decoupled from the Fock expansion
and all states above the valence state contribute to the dynamics of confinement:
Problem with an infinite number of degrees of freedom and complexity
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Semiclassical approximation to light-front QCD

GdT and S. J. Brodsky, PRL 102, 081601 (2009)

Starting from the QCD Lagrangian we write the LF Hamiltonian operator P− in terms
of quark and gluon dynamical fields

For a qq̄ state we factor out the longitudinal X (x) and orbital e iLθ dependence from ψ

ψ(x , ζ, φ) = e iLθX (x)
ϕ(ζ)
√
2πζ

x

b

(1-x)
6-2014
8851A1

where ζ2 = x(1− x)b2⊥ is the invariant transverse separation between two quarks and
L their relative LF orbital angular momentum

Chiral limit mq → 0 longitudinal modes X (x) decouple and the LF invariant equation
PµPµ|ψ⟩ = M2|ψ⟩ becomes a wave equation for ϕ

(
−

d2

dζ2
−

1− 4L2

4ζ2
+ U(ζ)

)
ϕ(ζ) = M2ϕ(ζ)

• Critical value L = 0 corresponds to the lowest possible stable solution

• Relativistic and frame-independent semiclassical WE in QCD

• The effective potential U includes all interactions, including those from the
higher Fock states
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Gravity dual: The bulk theory

GdT and S. J. Brodsky, PRL 102, 081601 (2009)

GdT, H. G. Dosch and S. J. Brodsky, PRD 87, 075005 (2013)

We start with the AdSd+1 action for a tensor-J field ΦN1...NJ

S =

∫
ddx dz

√
g eφ(z)

(
DMΦJD

MΦJ − µ2Φ2
J

)
in presence of a dilaton φ to modify the IR region of AdS

Variation off the AdS action leads to the WE[
−

zd−1−2J

eφ(z)
∂z
( eφ(z)

zd−1−2J
∂z
)
+

(µR)2

z2

]
ΦJ(z) = M2ΦJ(z)

Upon the substitution ΦJ(z) = z(d−1)/2−Je−φ(z)/2 ϕ(z) we separate kinematics and
dynamics to bring the AdS equation into its Schrödinger form

Mapping the bulk WE into physical Minkowski space(
−

d2

dz2
−

1− 4L2

4z2
+ U(z)

)
ϕ(z) = M2ϕ(z)

we find the QCD LFWE provided that z → ζ, (µR)2 → L2 − (d/2− J)2, with the LF
confinement potential given in terms of the IR modification of the ADS geometry

U(z) = zγe−φ(z)/2 ∂z
(
z−γ∂ze

φ(z)/2
)

γ = d − 1− 2J
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Superconformal symmetry and emergence of a mass scale

S. J. Brodsky, GdT, H. G. Dosch, PLB 729, 3 (2015)

GdT, H. G. Dosch, S. J. Brodsky, PRD 91, 045040 (2015)

H. G. Dosch, GdT, S. J. Brodsky, PRD 91, 085016 (2015)

No mass scale appears in the QCD Lagrangian and its action is conformal invariant:
What sets the scale of the confining dynamics of the boundary theory?

In the dual theory confinement is determined by the deformation of AdS space in the
IR, thus a geometric problem

We follow the procedure of de Alfaro, Fubini and Furlan (1976) for breaking conformal
symmetry in the Hamiltonian but keeping the action conformal invariant

Extension to superconformal symmetry following Fubini and Rabinovici (1984) leads to(
−

d2

dz2
−

1− 4(f + 1
2
)2

4z2
+ λ2 z2 + 2λ

(
f − 1

2

))
ϕ+ = M2ϕ+(

−
d2

dz2
−

1− 4(f − 1
2
)2

4z2
+ λ2 z2 + 2λ

(
f + 1

2

))
ϕ− = M2ϕ−

where f is dimensionless and λ has the dimension of [M2]

Solving U(z) in terms of φ(z) we obtain for d = 4

φ(z) = λz2

neglecting backreaction from the metric
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Light-front mapping and baryons

GdT, H. G. Dosch, S. Brodsky, PRD 91, 045040 (2015)

Upon substitution in the superconformal equations

z 7→ ζ, ϕ1 7→ ψ−, ϕ2 7→ ψ+

f 7→ L+ 1
2
, λ→ κ2

we determine exactly the nucleon potential in
GdT, Dosch and Brodsky, PRD 87, 075005 (2013)(
−

d2

dζ2
−

1− 4L2

4ζ2
+ κ4ζ2 + 2κ2(L+ 1)

)
ψ+ = M2ψ+(

−
d2

dζ2
−

1− 4(L+ 1)2

4ζ2
+ κ4ζ2 + 2κ2L

)
ψ− = M2ψ−

Eigenvalues

M2 = 4κ2(n + L+ 1)

Eigenfunctions

ψ+(ζ) ∼ ζ
1
2
+Le−κ2ζ2/2LLn(κ

2ζ2)

ψ−(ζ) ∼ ζ
3
2
+Le−κ2ζ2/2LL+1

n (κ2ζ2)
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See also: Abidin and Carlson (2009) and Gutsche, Lyubovitskij, Schmidt and Vega (2012)
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Superconformal meson-baryon symmetry

H. G. Dosch, GdT, S. J. Brodsky, PRD 91, 085016 (2015)

Mapping the bulk WE into physical space

z 7→ ζ, ϕ1 7→ ϕM , ϕ2 7→ ϕB

f 7→ LM − 1
2
= LB + 1

2
, λ 7→ κ2B = κ2M

we find the semiclassical LF meson/baryon
bound-state equations

●
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●

●

●

●
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+
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

(
−

d2

dζ2
+

4L2M − 1

4ζ2
+ κ4M ζ2 + 2κ2M(LM − 1)

)
ϕM = M2 ϕM(

−
d2

dζ2
+

4L2B − 1

4ζ2
+ κ4B ζ

2 + 2κ2B(LB + 1)

)
ϕB = M2 ϕB

with eigenvalues M2
M = 4κ2M(n + LM) and M2

B = 4κ2B(n + LM + 1)

Superconformal QM imposes the conditions λ = λM = λB (equality of Regge slopes)

and the remarkable relation LM = LB + 1

LM is the LF angular momentum between the quark and antiquark in the meson and
LB between the active quark and spectator diquark cluster in the baryon

Note: Additional term 2κ2S for internal spin, S = 0, 1
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The strong coupling and the IR-UV transition domain

Geometric coupling in the bulk

We can write the dilaton term in the AdS action in terms of a geometric coupling
g2
s (z), the inverse of the dilaton term,

eφ(z) =
1

g2
s (z)

The coupling gs(z) is known as the asymptotic string coupling in the classical gravity
approximation: It encodes the strong dynamics in the IR

The confinement potential can also be written in terms of the coupling gs(z)

U(z) = zγgs(z) ∂z
(
z−γ ∂zg

−1
s (z)

)
, γ = d − 1− 2J

The physical IR coupling αeff(Q
2) measured at Q2 > 0 is the Fourier transform of the

bulk coupling αs(z) = g2
s (z)/4π , integrated in the transverse LF plane

αeff(Q
2) ≡

∫ ∞

0
ζdζJ0(ζQ)αs(ζ)

= αeff(0)e
−Q2/4κ2

where αs(ζ) ∼ e−κ2ζ2 from the LF mapping z → ζ, λ→ κ2, the result found in

S. J. Brodsky, GdT and A. Deur, PRD 81, 096010 (2010)
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Comparison with experiment: IR domain
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 CLAS EG1DVCS (2014)
 CLAS EG4 (2022)
 Hall A/EG4 (2022)
 SLAC E154-E155
 Low Q2 cont.
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 Heavy quarkonium
 HERA jets

HLFQCD prediction (2010) for αeff (Q
2) compared with experimental results (including recent

JLab data) in the g1 scheme where αeff (0) = π. The grey curve corresponds to κ = 0.534 GeV

extracted from the hadron spectrum. The IR gaussian regime is valid up to Q2 ≃ 4κ2 ≃ 1 GeV2.

For Q2 > 4κ2 the semiclassical approximation is no longer valid and quantum corrections become

important
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Continuity of physical observables in QFT

Transition between the nonperturbative exponential fall off of the coupling in the IR
and the logarithmic decrease in the UV domain from asymptotic freedom

Point matching: Matching αs and β(αs) at single point Q0 ≃ 1 GeV gives a good
description of IR and UV data and avoids the Landau singularities by construction
A. Deur, S. J. Brodsky, and GdT, PLB 750, 528 (2015); 757, 275 (2016)

Present approach: Use analyticity properties of QFT which require the continuity of
physical observables to describe the continuous transition between IR and UV

We choose an effective charge (Grunberg) defined by an observable required by the
analytic construction of the present approach

We choose the effective charge in the g1 scheme defined by the Bjorken sum rule

αg1 (Q
2)

π
= 1−

6

gA

∫ 1

0
dx
[
gp
1 (x ,Q

2)− gn
1 (x ,Q

2)
]
, αg1 (0) = π

which is well measured in the IR and UV and is a physical observable
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Extension of the effective coupling to the near-IR region

Our starting point is the analytic expression

αeff(Q
2) = αeff(0) exp

−
∫ Q2

0

du

4κ2 + u ln
(

u
Λ2

)


which evolves between the IR nonperturbative exponential form

αeff(Q
2) → e−Q2/4κ2

, for Q2 ≪ 4κ2,

and the logarithmic Q2 dependence characteristic of asymptotic freedom

αeff(Q
2) →

1

ln (Q2/Λ2)
, for Q2 ≫ 4κ2

Question: How does the IR confinement scale κ relates to the log evolution scale Λ ?

Question: How to remove the IR singularities which have frustrated previous attempts
to describe the IR-UV transition region?

Both questions are related and their solution stems from the study of the flow of
singularities into the complex Q2-plane (Q2 ≥ 0)
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Singularity flows and confinement

Analytic continuation of αeff(Q
2) generates the

flow of singularities in the complex Q2-plane
which determines the possible solutions

The actual flow follows from the equation

4κ2 + Q2 ln

(
Q2

Λ2

)
= 0

Its solutions are given in terms of the Lambert
function Wk (z)

Q2
u(κ

2) = Λ2 exp

[
W0

(
−
4κ2

Λ2

)]
and

Q2
l (κ

2) = Λ2 exp

[
W−1

(
−
4κ2

Λ2

)]
for fixed Λ, where u and l are the solutions in the
upper and lower Q2 half-planes

κ2 Q2
u Q2

l
0 Λ2 0

Λ2/4e Λ2/e Λ2/e
πΛ2/8 iΛ2 −iΛ2

It is also useful to express κ as a function of Q2 along the solution locus

κ2(Q2) = −
1

4
Q2 ln

(
Q2

Λ2

)
, with Q2 → Q2

u,l
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For κ2 ≤ Λ2/4e αeff is not defined: Singularities
located in the real axis where integration is done

Critical value κ2 = Λ2/4e is the maximal value of
κ along the real axis. It corresponds to the
bifurcation point Q2 = Λ2/e where a double pole
is split into two complex conjugate singularities

For κ2 > Λ2/4e the effective coupling αeff can be
computed for any value of Q2

The maximal separation in the imaginary axis is
an upper bound of κ for a given Λ

κ2 =
π

8
Λ2,

It leads to a unique relation between the scales
relevant at large and short distances

κ2 Q2
u Q2

l
0 Λ2 0

Λ2/4e Λ2/e Λ2/e
πΛ2/8 iΛ2 −iΛ2

It also implies that αeff is an holomorphic function in the full Q2 > 0 complex plane:
It corresponds to maximal analyticity, namely the largest possible domain in the
Q2-Euclidean plane, compatible with general principles of QFT for an observable
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The Cauchy-Riemann differential equations

∇2Reκ2 = 0, ∇2Imκ2 = 0

imply that a maximum of Reκ2 along the real Q2-axis corresponds to a minimum of
Reκ2 along the imaginary direction, thus to a saddle point

The bifurcation point Q2 = Λ2/e for the critical value κ2 = Λ2/4e is a saddle point !

Singularity flow for the Re and Im components of κ2. The bifurcation point of the flow in the

Q2-plane is a saddle point for Reκ2 (left). The intersection of the surface Imκ2 with the plane

Imκ2 = 0 illustrates that κ2 is real along the flow (right)

16 / 18



Comparison with experiment: IR-UV transition domain
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Comparison of the effective strong coupling αeff with experimental results (including recent JLab

data) in the g1 scheme where αeff (0) = π. The red band corresponds to κ = 0.534 ± 0.025 GeV

extracted from the hadron spectrum and to maximal analyticity
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Conclusion and outlook

We have presented a brief overview of key theoretical points, unique connections and
physical facts that support the HLFQCD approach and ideas

This new approach to hadron physics leads to universal Regge trajectories and
supersymmetry relations between mesons, baryons and tetraquarks, an effective
supersymmetry

We have extended previous holographic results for the strong coupling into the IR-UV
transition domain. The analyticity-based approach leads to a continuous transition as
required by observables in QFT. The procedure removes the IR singularities which
have frustrated previous attempts to describe the coupling in IR-UV transition region.
It allows to describe the available data in this domain

Extension of the present nonperturbative results to the deep UV domain, presently
under consideration, combines exact results from the renormalization group for
non-Abelian gauge theories with the model presented. Our analysis leads to precise
constraints between the deep IR and UV behavior and yields to a description of the
effective coupling from 0 to 2 TeV in agreement with experiment
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