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I. Quantum Astrophysics



1M$ question:   Can astrophysics be quantum?

There seems to be a contradiction:

Astrophysics mostly deals with large, massive, hot objects

Quantum mechanics mostly deals with tiny, light, cold objects

How can these two words appear in the same term?



Criteria for “quantumness” for many-body systems: not size nor mass nor 

temperature, but the ratio: 

de Broglie wavelength / interparticle distance

a.k.a. the “overlap” 

Example:  Bose-Einstein 

                   condensates

The overlap occurs not only at low T’s   but also at high densities

(this is where quantum astrophysics dwells)



“Semiclassical”  vs  Quantum Astrophysics 

Semiclassical astrophysics isn’t classical anymore but not fully quantum yet.

It uses the Pauli exclusion principle as a collapse-preventing agent based on 

Fermi-Dirac statistics (quantum).

➢ white dwarf stars - electron degenerate matter, mass limit is 1.4 Mʘ 

[Chandrasekhar]

➢ neutron stars - neutron degenerate matter, mass limit is 2.2-2.9 Mʘ 

[Tolman–Oppenheimer–Volkoff]

However

✓ semiclassical astrophysics does not really use the Heisenberg uncertainty 

nor quantum evolution equations (SE, von Neumann/q-master, etc)

✓ both Chandrasekhar and TOV limits were derived using some classical 

fluids’ equations of state (expected to mimic quantum systems) 



Quantum uncertainty is a big game changer when it comes to astrophysics 

and here’s one example why:

In the canonical QM: HUP implies classical trajectories aren’t observable 

(one can’t measure the position and tangent vector of a trajectory)

Var(xi) Var (pi) > 0 

Similar reasoning can be applied to null hypersurfaces in 4D (a.k.a. event 

horizons a.k.a. black holes):                        (tangent 4-vectors are null)

If GR is a correct classical limit of some quantum theory then average values 

of tangent 4-vectors operators

These operators are simultaneously observable if and only if their 

commutator                                 vanishes.



Quantum uncertainty is a big game changer when it comes to astrophysics 

and here’s one example why:

In the canonical QM: HUP implies classical trajectories aren’t observable 

(one can’t measure the position and tangent vector of a trajectory)

Var(xi) Var (pi) > 0 

Similar reasoning can be applied to null hypersurfaces in 4D (a.k.a. event 

horizons a.k.a. black holes):                        (tangent 4-vectors are null)
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But in GR                                                                vanishes iff a state vector 

is a Lorentzian scalar... But it is not – because quantum wavefunctions are 

Euclidean scalars normalized over the 3D space volume.

Therefore, event horizons aren’t QM observable  



What is Quantum Astrophysics 

QAP is a discipline which applies the full formalism of QM to astronomy 

phenomena. Its main features:

➢ it is based on the quantum uncertainty principle and quantum evolution 

equations (for state vector and/or density matrices)

➢ it uses other quantum phenomena which emerge (Pauli exclusion, BEC, 

superfluidity)

In its strong form, QAP requires a theory of quantum gravity and physical 

vacuum (such as superfluid vacuum theory).

In its weaker form, QAP requires relativistic QM coupled to classical GR.



II. Quantum Liquids:  Introduction



Q: What is quantum Bose liquid?

  

A: It is a quantum fluid that consists of the particles that obey the quantum Bose-

Einstein statistics (not Fermi–Dirac, not Maxwell–Boltzmann); these particle are 

called bosons;

spin-statistics theorem: bosons must have integer spin;

examples: BEC, superfluids, etc.

Example 1: Bose-Einstein condensate

BEC is an extended continuous quantum object (not anymore a cloud of particles)

QM: same-species Bose particles are indistinguishable; particle-wave duality 

λ << d λ < d 

λ ~ d d → 0 

BEC

collective 

d.o.f.

(single w.f.)
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Example 2: Superfluid

Superfluid is a quantum Bose liquid in which dissipative

fluctuations are suppressed

no dissipations   no friction/drag force  macroscopically 

behaves like a perfect or ideal fluid

Landau shape for the excitations’

spectrum is a criterion 



Advantages of including the logarithmic term:

✓ Supported by statistical mechanics (strong interaction: when K/U << 1)

✓ Non-perturbative

✓ Takes into account vacuum effects

✓ Fits experimental data (+ resolves some puzzles)

Modern theory of quantum Bose liquids 

(BEC and superfluids)

2| | =

| = N

where

logarithmic

term (vacuum?)

Gross-Pitaevskii

term (2-body)

Ginzburg-Sobyanin

term (3-body)



III. Application:

Superfluid stars

15:24

➢ Superfluid stars and Q-balls in curved spacetime                                    

     K.G. Zloshchastiev, Low Temp. Phys. 47 (2021) 89



In the hierarchy of superdense stars, various objects exist, which 

occupy an intermediate place between neutron stars and black 

holes. 

To a distant observer, such objects would look almost like black 

holes – however, they have no null surface (horizon)

For which reason they are often aggregated under the name of 

compact stars (CS) and black hole mimickers (BHM). 

Widely known examples: 

✓ geons

✓ quark stars

✓ gravastars

✓ boson stars (most popular, but has issues with SM)



In [Zloshchastiev (2021)], it was proposed another type of CS/BHM-type 

Bose fluid objects – superfluid stars (SFS), which are modelled by scalar 

field with logarithmic nonlinearity.

Because superfluids are macroscopic quantum (wave-mechanical) 

objects, the stability of superfluid stars against gravitational collapse is 

expected to be enhanced by the uncertainty principle, similarly to boson 

star models. 
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field with logarithmic nonlinearity.

Because superfluids are macroscopic quantum (wave-mechanical) 

objects, the stability of superfluid stars against gravitational collapse is 

expected to be enhanced by the uncertainty principle, similarly to boson 

star models. 

Moreover, superfluidity introduces an additional effect here. The inviscid 

flow, caused by suppression of dissipative fluctuations, makes the fluid 

parcels (a.k.a volume elements) more resistant to coming to a full stop 

and adhering to each other.

Therefore SFS are expected to have a larger degree of resistance to 

gravitational collapse than the conventional boson stars.

Bonus: unlike conventional boson stars, SFS don’t require exotic 

elementary particles, because superfluids are collective states of matter, 

which can form from known particles, even fermions.



where

Following the standard procedure of dealing with Lorentz-symmetric 

Bose systems: Adopting the units c = 1 and metric signature (−+++), we 

write the Lagrangian of our model as:

where the scalar field potential is borrowed from Log-superfluid models:

The corresponding field equations read:



We are interested in whether equilibrium field configurations exist. For 

simplest equilibrium configurations, spacetime metric would be time-

independent and likely spherically-symmetric 

while the scalar field must be stationary and spherically-symmetric

Then field equations simplify to a set of the following ODEs

where



These equations are numerically solved, using the shooting method:

✓ Values of parameters are chosen in such a way that our scalar field 

vanishes at spatial infinity, and has no nodes and singularities 

✓ Then, non-singular finite-mass solutions are expected to describe the 

lowest-energy bound states

✓ Eigenvalue problem for Ω and B0 with initial conditions:

Once a desired solution is obtained, the total mass can be derived from an 

asymptotic value of the mass function  

where the mass function is related to the metric via the identity 



Results: static configurations do exist 

Scalar field is localized:



Mass function is asymptotically flat at spatial infinity:



Compactness







Analytical estimates

If b is small, then our model refers to astronomical-scale CS/BHM 

objects, such as superfluid stars or superfluid cores of neutron stars

For example, let us assume that our superfluid star has the maximum 

mass which is equal to the mass of Sun

Hence the radius of such a star would be:

In summary, logarithmic superfluid stars:

✓ have BH-similar characteristics – except they don’t have event horizons

✓ don’t have an upper mass limit, such as TOV



THANK YOU !

Details about our current projects and community can be found at:

Zloshchastiev@ResearchGate
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