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In the framework of the modified general relativity theory – the quartet-metric
gravity / spontaneously broken relativity, the so called “dark holes” merging a
central black hole and a peripheral scalar graviton dark halo are considered. It is
shown that the dark holes may naturally explain an effect of asymptotically flat
rotation curves, attributed conventionally to the existence of some dark matter.
Possibilities of further modification of the basic dark holes, to convert them to
more realistic ones for application in astrophysics and cosmology, are discussed.
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Outline
Dark matter (DM) and dark energy (DE) problems are probably the most crucial
ones in the modern physics.

▶ Strong observational arguments in favor of (cold) DM and DE ⇒ the ΛCDM standard
cosmological model: the Universe is dominated by DE+DM at present epoch.

▶ Problems with particle-like DM: no SM candidate, no preferred BSM model, no signal in
direct DM searches, cold DM dynamical problems at small scales.

▶ Vacuum energy /cosmological constant (CC) theoretical problems: huge CC from EFT
vs tiny observational CC.

Are (extended) SM + GR sufficient to resolve DM and DE problems?
An alternative: search for dark degrees of freedom in a modified gravity.
GR as a Diff gauge EFT: massless tensor graviton with only two polarizations. Where can we
get extra degrees of freedom?

A modified gravity: additional degrees of freedom from spontaneous Diff gauge
symmetry breaking. Extra polarizations of (massive) tensor graviton + physical scalar
gravi-Higgs boson (scalar graviton): DM and DE candidates.

An implementation: quartet-metric gravity / spontaneously broken relativity
(SBR) [Pirogov 2015] ...

▶ The concept, minimal Lagrangian and field equations.
▶ Scalar graviton as an effective DM.
▶ Dark holes: vacuum spherically symmetric stationary solutions.
▶ The exceptional solution ⇒ asymptotically flat rotation curves.
▶ Prospects to describe realistic objects: dark hole modifications.
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Motivation: DM and DE problems
The standard ΛCDM model – homogenous, isotropic spatially flat
Friedmann–Robertson–Walker Universe dominated (at present) by Dark Energy
and Dark Matter: 5% SM matter, 25% (cold) DM (0.5-1.6% 3 SM ν), 70% DE.
• Ωtot = ρ/ρc ≃ 1 from CMB data ⇒ spatially flat Universe.
• SN lumi. distance vs z ⇒ accelerated expansion of Universe ⇒ ΩΛ ≃ 0.7.
• Strong motivation for cold DM: CMB anisotropy vs present day baryonic density fluctuations
⇒ Ωm ≃ 0.3

DM is observed in gravitationally bound structures from dwarf galaxies to galaxy
clusters: vr dispersion, rotation curves, gravitational lensing vs visible density.
• From largest structures: ⟨ρDM⟩ ≃ 0.264ρc , consistent with ΛCDM.
• DM in galaxies: asymptotically flat rotation curves, the baryonic Tully–Fisher relation,
v3÷4
rot ∞ ∝ Mbar , for Mbar = 106 ÷ 1012M⊙ (DM / SM matter coupling?).

No natural DM candidate, no preferred BSM model providing it, no signal in
direct DM searches: accelerator production, galactic WIMP detection . . .
Small scale (≪ 1 Mpc) cold DM dynamical problems: • Missing satellites: few M > 107M⊙

subhaloes in the MW, much less than expected from simulations. • The cusp-core problem: no
central DM density peak ρ(r) ∝ 1/r0.8÷1.4 • Small DM haloes of the largest MW satellites . . .

The vacuum energy (CC) issue: huge CC from EFT vs tiny observational CC

Problems with CC and particle-like DM ⇒ Modified gravity: extra gravitational
degrees of freedom, (massive) tensor and scalar gravitons as DM/DE?
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Solve DM and DE (small CC) problems in parallel?
A candidate: the quartet-metric gravity / spontaneously broken relativity
(SBR) [Pirogov 2015] [Pirogov 2017]

The SBR concept: gravity is described by an EFT built in observer’s
arbitrary kinematic coordinates xα on a dynamical metric gµν(x

α) and a
set of distinct dynamical coordinates zα ≡ δαa Z

a(xµ) where scalar fields Z a,
a = 0, 1, 2, 3 are transformed (piecewise in xα) under the constant Poincaré
group acting in Z a space.
More specifically, the gravity theory is considered as a gauge theory
corresponding to a spontaneosly broken relativity symmetry, with Z a being
gravi-Higgs fields. (Such an EFT can be naturally generalized to a spacetime with an

arbitrary dimension D.) From particle physics viewpoint, 3 combinations of Z a

components (D − 1 at arbitrary D) become additional components of a massive
tensor graviton.
The remaining 1 combination of Z a describes a scalar graviton playing the
rôle of a physical gravi-Higgs boson. In what follows, we study
manifestations of the latter as a DM [Pirogov 2012]. Structures built of the
scalar graviton – dark holes, are generalization of GR black holes.
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Quartet-metric gravity / SBR [Pirogov 2022]

The EFT of SBR is defined via the generally covariant action functional:

S [gµν ,Z
a] =

∫
L(gµν ,Z a)d4x

Four scalar fields Z a(x), a = 0, 1, 2, 3:
Patchwise invertible: xµ = xµ(Z ) ⇒ can use Z a as distinct coordinates
zµ ≡ δµa Z

a(x)

Internal symmetry: Lorentz transformations, constant shifts in Z space
⇒ Z a enter L only through a quasi-metric ζµν ≡ ∂µZ

a∂νZ
bηab.

ζµν has a (patchwise) inverse ζ−1µν , ζ ≡ det(ζµν) < 0. We define an
effective scalar field (the scalar graviton or systolon):

σ = log(
√
−g/

√
−ζ) ,

and tensor fields, the effective metric (i.e. the one defining the observables)
ḡµν , and the metric/quasi-metric correlator ǣµ

ν (a kind of dynamical DE):

ḡµν ≡ ew̄(σ)gµν , ǣ
µ
ν ≡ ḡµλζλν (ḡµν ≡ ḡ−1µν) .

In terms of effective fields: S [gµν ,Z a] =
∫
L̄(ḡµν , ǣ

µ
ν , σ)

√
−ḡ d4x
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The minimal Lagrangian

L̄ = L̄g + L̄s + L̄m

L̄g = −1

2
M2

Pl R̄(ḡµν)− V̄æ(ǣ
µ
ν )

L̄s =
1

2
ḡµν∂µs∂νs − Vs(s)

Looking for vacuum solutions
only ⇒ neglect ordinary
matter term Lm.

• Planck mass: MPl = 1/(8πGN)
1/2.

• R̄ is Ricci scalar curvature.
• s = Msσ, Ms < MPl.
• Væ depends on traces of ǣµ

ν and is
responsible (along with Vs(s)) for a
spontaneous relativity breaking
[Pirogov 2022].
• For the moment, approximate Væ

by an effective CC: V̄æ = M2
PlΛ̄, i.e.

tensor graviton mass is neglected.

Rewrite L̄s in terms of σ and factor out its mass scale Ms ≡ MPlΥ:

L̄s = L̄σ = M2
PlΥ

2

[
1

2
ḡµν∂µσ∂νσ − Vσ(σ)

]
Υ = Ms/MPl characterizes coupling between scalar and tensor gravity.
Vσ(σ) = Vs(µσ)/M

2
PlΥ

2.
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The field equations
• δS/δgµν = 0, δS/δZ a = 0 (see backup). The latter can be integrated right
away. ⇒ An integration constant Λ0 appears, which makes the scalar
graviton self-interacting even in case of the Lagrangian Vσ(σ) ≡ 0:

V eff(σ) = Vσ(σ) +
Λ0

Υ2
e−2w̄(σ)−σ ,

• The effective energy–momentum tensor for the scalar graviton:

T̄ eff
µν = T̄σµν + ḡµνM

2
PlΛ0e

−2w̄(σ)−σ =

= M2
PlΥ

2

[
∂µσ∂νσ − ḡµν

(
1

2
(∂σ)2 − V eff(σ

)]
,

• The field equations (cf. (6)–(7) in backup) in familiar form:

R̄µν −
1

2
ḡµνR̄ =

1

M2
Pl

T̄ eff
µν + ḡµν Λ̄ (1)

1√
−ḡ

∂µ
(√

−ḡ ḡµν∂νσ
)

= −∂V eff

∂σ
(2)

(See the equation for Z a in backup, the two eqs. above are enough for our present purposes.)
Yu.F. Pirogov, O.V. Zenin (NRC “Kurchatov Institute” – Logunov Institute for High Energy Physics, Protvino)Quartet-metric gravity and scalar graviton dark holesOctober 25, 2024 7 / 29



Vacuum spherically symmetric stationary dark holes
• To start with, we look for static spherically symmetric vacuum solutions
merging a GR-like central black hole and a continuous scalar graviton halo.

The line element in polar coordinates r , θ, ϕ in the reciprocal gauge:

ds2 ≡ ḡµν dx
µdxν = A(r)dt2 − C (r)r2(sin2 θ dϕ2 + dθ2)− A−1(r)dr2

Rewrite (1) as R̄µ
ν =

1

M2
Pl

(
¯T eff

µ

ν − 1

2
δµν

¯T eff

)
− δµν 2Λ̄

↑ the {00} component: 1
2

1
r2C

d
dr

(
r2C dA

dr

)
= −Υ2V eff(σ)− Λ̄ (3)

↑ the {00} − {rr} combination: 1
r2C 1/2

d
dr

(
r2 dC 1/2

dr

)
= − 1

2Υ
2
(
dσ
dr

)2
(4)

Eq. 2 reads: 1
r2C

d
dr

(
r2CA dσ

dr

)
= ∂V eff (σ)

∂σ (5)

V eff(σ) = Vσ(σ) +
Λ0

Υ2
e−2w̄(σ)−σ

• The scalar halo cannot be “stripped away” unless V eff(σ) has a minimum.
• Simplifications (sufficient to find generic features): for the moment we set
Vσ ≡ 0, Λ̄ = 0 and take w̄(σ) = w̄ ′σ with a constant w̄ ′ ̸= −1/2.
If |1+ 2w̄ ′| ∼ Υ, the latter is not a small parameter anymore ⇒ assume |1+ 2w̄ ′| ≫ Υ.
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Vacuum spherically symmetric stationary dark holes
• Classify solutions of Eqs. (3)–(5) by Λ0 sign:

Λ0 < 0: non-degenerate dark holes [Pirogov 2016]. No analytic
parameterization for the entire class of solutions (to our knowledge),
still all of them converge at r → ∞ to the exact exceptional one
featuring asymptotically flat rotation curves ⇒ gravitational
confinment, no flat-space asymptotics (next slide).
Λ0 = 0: effectively GR with a massless scalar ⇒ a degenerate dark
hole (cf. Buchdahl–Fisher–Janis–Newman–Winicour solution)

▶ Naked singularity with massless scalar hair instead of GR-like black hole. In
principle, it can be distinguished from the latter, e.g., by smaller shadow radius /
visible mass ratio.

▶ Asymptotically flat space at r → ∞.
▶ σ is singular at r → rg , can define central Yukawa charge:

Yσ = 4π
∫
(r2CAσ′)′dr = 4πrgσr/

√
1 + 2Υ2σ2

r .
Deviations from Schwarzschild metric at r ≫ rg can be arbitrary small if Yσ → 0.

(details in backup).
Λ0 > 0: the scalar graviton mimics dynamical DE. Partially studied in a
cosmological context [Pirogov 2018]. Considering this in a context of the scalar
graviton dark haloes represents an additional interest (not in this talk).

Yu.F. Pirogov, O.V. Zenin (NRC “Kurchatov Institute” – Logunov Institute for High Energy Physics, Protvino)Quartet-metric gravity and scalar graviton dark holesOctober 25, 2024 9 / 29

https://link.springer.com/article/10.1140/epjc/s10052-016-3973-4
https://journals.aps.org/pr/abstract/10.1103/PhysRev.115.1325
https://arxiv.org/abs/gr-qc/9911008
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.20.878
https://iopscience.iop.org/article/10.1088/1475-7516/2019/01/055


An exact exceptional solution, Λ0 < 0
(found approximately in [Pirogov 2012] the
exact one was obtained in Einstein–Maxwell–
dilaton model in [Sheykhi 2006], [Tangen
2007])

Eqs. 3–5 with Vσ = 0, Λ̄ = 0, w̄(σ) = w̄ ′σ, w̄ ′ ̸= −1/2 and Λ0 < 0 have an exact
three-parametric analytic solution:

A(r) =
(
1− rg

r

)(
r

rh

) 4Υ2

(1+2w̄′)2+2Υ2

C (r) =

(
r

rc

)− 4Υ2

(1+2w̄′)2+2Υ2

σ(r) =
2(1 + 2w̄ ′)

(1 + 2w̄ ′)2 + 2Υ2
log

r

rh

• rg is the Schwarzschild radius of the central
black hole.
• The scalar profile parameter:

rh = Υ
[
− 2

(1+2w̄′)2+2Υ2
1
Λ0

]1/2
• rc is fixed by the gauge-invariant condition:

d(measured circle length)
d(measured radius)

→ 2π , r → ∞

⇒ d(rC1/2)/(A−1/2dr) → 1, r → ∞

⇒ rc = rh

[
1 + 2Υ2

(1+2w̄′)2

] (1+2w̄′)2

2Υ2

(rc ≃ rhe in the Υ2 ≪ 1 limit)
• Z a(r) fields: see backup

Scalar/tensor gravity decoupling: Υ → 0 ⇒ Schwarzschild metric.

Why exceptional? • Any solution of Eqs. 3-5 with Vσ = 0, Λ̄ = 0,
w̄(σ) = w̄ ′σ, w̄ ′ ̸= −1/2 and Λ0 < 0 asymptotically converges to it at
r → ∞ [Pirogov 2012].
• In the non-perturbative 1 + 2w̄ ′ → 0 limit, it converges to an effectively
1-dimensional solution rather than to (modified) Buchdahl–Fisher–et al.

No flat space at r → ∞! The anomalous radial acceleration term ∝ −1/r .
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An exact exceptional solution, Λ0 < 0 [ cross-check in the C = 1 gauge → ]

• The radial acceleration of a particle at rest:
d2r

ds2
= −Γr00

(
dt

ds

)2

= −
1

2
A′(r) =

[
−

rg

2r2
−

2Υ2

(1 + 2w̄ ′)2 + 2Υ2

(
1−

rg

r

) 1

r

]
·
(

r

rh

) 4Υ2

(1+2w̄′)2+2Υ2

• “Geometric” energy/mass of the system (non-gauge invariant):

Mg (r) = 4πM2
Pl

(
rc
rh

) 4Υ2

(1+2w̄′)2+2Υ2
[
(1 + 2w̄ ′)2 − 2Υ2

(1 + 2w̄ ′)2 + 2Υ2
rg +

4Υ2

(1 + 2w̄ ′)2 + 2Υ2
r

]
The constant term ∝ rg corresponds to the singularity at r = 0.
The scalar graviton halo contributes to the divergent term ∝ r .

• Probing the halo by orbital motion of test particles.
The apparent rotation velocity for a circular orbit with the radius r :

vrot(r) =

[(
1 +

2Υ2

(1 + 2w̄ ′)2

)
1

2

rg
r − rg

+
2Υ2

(1+ 2w̄′)2

]1/2
At r → ∞ vrot →

√
2Υ/|1+ 2w̄′| – an asymptotically flat rotation curve.

Can we model DM haloes seen in galaxies?
A typical asymptotic vrot in large spiral galaxies is ∼ 300 km/s (∼ 30 km/s in DM dominated
dwarfs), thus Υ ∼ 10−4 ÷ 10−3 ⇒ Ms = ΥMPl ∼ 1014÷15 GeV (close to GUT scale?) A caveat:
large deviations from GR-like behaviour – not a problem at r < rh, still need cutoff at r ≫ rh →
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Possible modifications and extensions
• The minimal Lagrangian:

A class of Λ0 < 0 solutions with central “Yukawa charge” Yσ ̸= 0: an improved description at
small distances. A possibility to describe realistic DM haloes? [see backup].
Rotating dark holes? Cylindrical configurations? Asymptotical behaviour?
Approximate DE by an effective CC (Væ = Λ̄). Asymptotically de Sitter:
A(r) ≃ 1− rg

r
+ 4Υ2

(1+2w̄′)2
log r

rh
− Λ̄

3
r2. An effective cut off at rcut ∼ Υ/Λ̄1/2 –

– related to DM in galaxy clusters or structures at cosmological scales?
• Lagrangian modifications:

σ self-interaction: Veff (σ) =
Λ0
Υ2 e

−2w̄(σ)−σ + Vσ(σ) =
Λ0
Υ2 e

−2w̄(σ)−σ + Λ̄ + m2

2
(σ − σ0)2 + . . . .

Flat/de Sitter asymptotics? Some numerical examples in backup.
Non-minimal σ kinetic term. (Not excluded, as we have an EFT.)
Dynamical DE via vacuum/effective metric correlator ǣµ

ν ≡ ḡµλζλν , Væ(ǣ
µ
ν ) ̸= 0.

Tensor graviton becomes massive [Pirogov 2022].

• Quasi-stationary and unstable dark holes? QNMs for stationary solutions?
• Matter extended dark holes. Account for baryonic and other SM matter.

Multi-flavor DM, e.g., σ / heavy νs coupling (recall the “Yukawa charge” Yσ)?
• The effective metric definition: ḡµν = ew̄(σ)gµν . Non-linear w̄(σ)? Dark / SM matter
dependent w̄(σ, ϕSM , . . . )?
• w̄(σ) = −σ/2: Weyl-transverse gravity. A possibility to resolve the CC / DE problem
[Pirogov 2022]. DM aspects require further study.
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Summary
This study is an entrance point to a more general problem of merging a
modified gravity, DM and DE through the quartet/multiscalar metric
gravity / spontaneously broken relativity (SBR):

We studied basic stationary spherically symmetric vacuum solutions in
the SBR framework.
We identified a class of solutions – dark holes, which merge a GR-like
central black hole with a continuous scalar graviton halo and
asymptotically converge to the exact “exceptional” solution.
A remarkable manifestation of the dark scalar halo is the effect of
asymptotically flat rotation curves, similar to the ones observed in
galaxies and conventionally attributed to the presence of some DM.
We briefly discuss possibilities of further modification of basic dark holes
with a prospect to describe realistic astrophysical objects.

Just as a black hole is a signature of GR, the dark hole may be considered
as a signature of the quartet-metric/multiscalar paradigm.

The problem requires further extended study.
Yu.F. Pirogov, O.V. Zenin (NRC “Kurchatov Institute” – Logunov Institute for High Energy Physics, Protvino)Quartet-metric gravity and scalar graviton dark holesOctober 25, 2024 13 / 29



Thank you!

Backup
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The field equations back

δS

δgµν
=

δS

δḡλρ

δḡλρ

δgµν
+

δS

δσ

δσ

δgµν
= 0 ⇒ Einstein’s equations (with traceless

terms explicitly separated):

M2
Pl

[
R̄µν −

1

4
ḡµνR̄

]
= T̄σµν −

1

4
ḡµνT̄σ +

+
1

4
ḡµν

[
(1 + 2w̄ ′)

(
M2

Pl(R̄ + 4Λ̄) + T̄σ

)
− 4√

−ḡ

δ
√
−ḡ L̄σ
δσ

]
(6)

R̄µν = Rµν(ḡµν)

T̄σµν = M2
PlΥ

2

[
∂µσ∂νσ − ḡµν

(
1

2
(∂σ)2 − Vσ

)]
, T̄σ = ḡµνT̄σµν

δ
√
−ḡ L̄σ
δσ

= −M2
PlΥ

2

[
∂µ

(√
−ḡ ḡµν∂νσ

)
+
√
−ḡ

∂Vσ

∂σ

]
w̄ ′ = dw̄(σ)/dσ

Tr (1) ⇒ 1

4
(1+2w̄ ′)

(
M2

Pl(R̄ + 4Λ̄) + T̄σ

)
−− 1√

−ḡ

δ
√
−ḡ L̄σ
δσ

= 0
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The field equations back

δS/δZ a = 0 ⇒ ∂ν

[√
−ḡ ζ−1µν∂µZ

a 1

4

(
M2

Pl(R̄ + 4Λ̄) + T̄σ

)]
= 0

Integrate it: without loss of generality, choose xµ ≡ zµ ≡ δµaZ a, so that
ζµν = ηµν ,

√
−ḡ = e2w̄

√
−g = e2w̄+σ ⇒

η−1µνδaµ ∂ν

[
e2w̄+σ 1

4

(
M2

Pl(R̄ + 4Λ̄) + T̄σ

)]
= 0 .

The expression in [...] is a scalar ⇒ the following holds in any frame:

e2w̄+σ 1

4

(
M2

Pl(R̄ + 4Λ̄) + T̄σ

)
= −M2

PlΛ0 (7)

M2
PlΛ0 is an arbitrary integration constant

playing a crucial rôle.
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Degenerate dark holes: Λ0 = 0 back

At Λ0 = 0 Eqs. 1–2 coincide with Einstein–massless scalar equations with the static spherically
symmetric solution [Fisher 1948, Buchdahl 1959, Janis–Newman–Winicour 1968]:

A(r) =
(
1−

rg

r

)1/
√

1+2Υ2σ2
r

C(r) =
(
1−

rg

r

)1−1/
√

1+2Υ2σ2
r

σ(r) =
σr√

1 + 2Υ2σ2
r

log
(
1−

rg

r

)
+ σ0

• If σr ̸= 0, the r = rg surface has zero area ⇒
naked singularity instead of a black hole. The
Schwarzschild metric is recovered in the σr → 0
limit.
• Minkowski space asymptotics at r → ∞.
• The radial acceleration of a particle at rest (no
anomalous acceleration terms decaying slower
than ∝ −1/r2):

d2r

ds2
= −Γr00

(
dt

ds

)2

= −
1

2
A′(r) = −

1√
1 + 2Υ2σ2

r

[
1−

rg

r

]1−1/
√

1+2Υ2σ2
r ·

rg

2r2

• Define “geometric” mass of the system as Mg = 2M2
Pl

∫
R0
0

√
−ḡd3x (coinciding in GR with

Tolman’s energy/mass of a spatially localized system; non-gauge invariant):
Mg =

∫
[T eff 0

0 −
∑

i=1,2,3
T eff i

i ]
√
−ḡ d3x = 2M2

Pl

∫
R0
0

√
−ḡ d3x = 4πM2

Plrg
/√

1 + 2Υ2σ2
r :

• Probing the metric by orbital motion of test particles. For a circular orbit with the radius r :

dϕ/dt =
[
A(r)′/(C(r)r2)′

]1/2
. An observer at rest will derive (e.g., from Doppler shifts) a gauge-invariant apparent

rotation velocity with account of the gravitational redshift,
vrot (r) = [C(r)r2/g00(r)]

1/2 dϕ/dt =
[
(log A(r))′/(log C(r)r2)′

]1/2
:

vrot(r) =
1

[1 + 2Υ2σ2
r ]

1/4
·
( rg

2r

)1/2
/[

1−
rg

2r
[1 + 1/

√
1 + 2Υ2σ2

r ]

]1/2
[cross-check in the C = 1

gauge]

Yu.F. Pirogov, O.V. Zenin (NRC “Kurchatov Institute” – Logunov Institute for High Energy Physics, Protvino)Quartet-metric gravity and scalar graviton dark holesOctober 25, 2024 17 / 29

https://arxiv.org/abs/gr-qc/9911008
https://journals.aps.org/pr/abstract/10.1103/PhysRev.115.1325
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.20.878


The exceptional solution: Z a(r)

Z a(r) fields in internal polar coordinates
(up to Lorentz transformations and shifts in the internal {Z a} space):

Z 0 = C0t , Z
θ = θ , Zϕ = ϕ ,

Z r = rh

 3

C0

(1 + 2w̄ ′)2 + 2Υ2

(1 + 2w̄ ′)(1 + 6w̄ ′) + 2Υ2

(
rc
rh

) 4Υ2

(1+2w̄′)2+2Υ2
(

r

rh

) (1+2w̄′)(1+6w̄′)+2Υ2

(1+2w̄′)2+2Υ2

+ C1

1/3

C0, C1 are arbitrary constants.
Note that in this particular solution Z a do not depend on rg .

back

Yu.F. Pirogov, O.V. Zenin (NRC “Kurchatov Institute” – Logunov Institute for High Energy Physics, Protvino)Quartet-metric gravity and scalar graviton dark holesOctober 25, 2024 18 / 29



The exceptional solution: 1 + 2w̄ ′ → 0 limit back

In the 1 + 2w̄ ′ → 0 limit the exceptional solution can be, w/o loss of generality, written as:

A(r) = A0 + 2
rg

rh
·
r

rh
+

(
r

rh

)2

, C(r) =

(
r

rc

)−2

, σ(r) = const,

where rh = (−Λ0)−1/2 and A0 and rg are arbitrary parameters. Making a shift r → r − rg and
redefining A0 − (rg/rh)

2 → A0, one gets the line element:

ds2 =

[
A0 +

(
r

rh

)2
]
dt2 − r2c (sin

2 θ dϕ2 + dθ2)−
[
A0 +

(
r

rh

)2
]−1

dr2.

The spacetime with such a line element can be viewed as a hypercylinder oriented along r axis
with the transverse section being a 2D surface of a sphere with the constant radius rc . In this
sense, the exceptional solution in the 1 + 2w̄ ′ = 0 limit is effectively 1-dimensional.

Note that with A0 > 0 the r coordinate becomes compact as
∞∫
0

[
A0 +

(
r
rh

)2
]−1

dr is finite.

This result holds in case of D > 4 dimensions, where the transverse section of the hypercylinder becomes an
isotropic homogenous (D − 2)-dimensional space with a constant curvature 1/rc .
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Modification of the exceptional solution (no Lagrangian modification) back

The exceptional solution: weak σ singularity at r → 0. The distributed Yukawa charge
due to σ self-interaction via Veff (σ):

Y (r) = 4πr 2C(r)A(r)σ′(r) = 4π
2(1 + 2w̄ ′)

(1 + 2w̄ ′)2 + 2Υ2
(r − rg )

For any solution of Eqs. 3–5 with Λ0 < 0, Vσ = 0, Λ̄ = 0, w̄(σ) = w̄ ′σ, w̄ ′ ̸= −1/2:
▶ If σ′(r) = 0 then σ′′(r) = −1/A(r) · Λ0e−(1+2w̄′)σ > 0 ⇒ the extremum of σ(r) (if

exists) is a minimum.
▶ Any solution converges to the exceptional one at r → ∞. (Consider a finite static deviation

from the exceptional solution, show that it tends to 0 at r → ∞ [Pirogov 2012])
▶ Any solution is defined by 4 parameters (Start from Λ0 and A, A′, C , C ′, σ, σ′ at some r = r0;

Veff (σ) = Λ0e
−(1+2w̄′)σ ⇒ can always redefine Λ0 by σ → σ + σ(r0) ⇒ -1 parameter;

A(r0) is absorbed into t redefinition, C(r0) is fixed by the circle length/radius condition ⇒ only 4
independent parameters.)

Note that at σ → +∞ the Veff vanishes: Veff (σ) = Λ0e−(1+2w̄′)σ → 0 (1 + 2w̄ ′ > 0).

Merge degenerate (Yσ ̸= 0) and exceptional (Yσ = 0) solutions: consider a modified
Λ0 < 0 solution with a strong σ → +∞ singularity at r → rg . The Veff (σ) → 0 can be
neglected ⇒ at small r the modified solution behaves like the degenerate one:
σ ∼ σr log(1− rg/r) + σ0, r → rg , σr < 0, Yc ≃ 4πrgσr . At r ≫ rg σ reaches its minumum
(σmin ≃ σ0) and converges to the exceptional solution at r → ∞. The intercept point is
rint ≃ rhe

σr/2. The modified solution has four parameters: rg , rh, Yc , σr (rc is fixed by the
circle length/radius condition at r → ∞). The exceptional solution has Yσ = 0 and depends on
the two parameters, rg and rh.
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Modification of the exceptional solution: numerical examples back

Υ = 10−3, rg = 2GMMW /c2, Yσ/rg = −0.75, log10
(
rhe

σr
2 /0.02pc

)
= 5
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Modification of the exceptional solution: numerical examples back

Υ = 10−3, rg = 2GMMW /c2, Yσ/rg = −0.997 · 105, log10
(
rhe

σr
2 /0.02pc

)
= 5.43
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Modification of the exceptional solution: numerical examples back

Υ = 10−3, rg = 2GMMW /c2, Yσ/rg = −0.93 · 102, log10
(
rhe

σr
2 /0.02pc

)
= 6.95
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Dark hole (Lagrangian) modifications back

? How to modify the dark hole to look like a finite DM halo?
• Need a stationary solution with Minkowski (de Sitter) asymptotics at r → ∞
while keeping the flat rotation curve feature up to cutoff at some rcut .
• All solutions featuring the asymptotically flat rotation curves (Λ0 < 0) have
non-Minkowski/de Sitter asymptotic metric:

ds2 ∼ (r/rh)
4Υ2

dt2 − r2(r/rh)
−4Υ2

dΩ2 − (r/rh)
−4Υ2

dr2.

No built-in cutoff mechanism in the minimal Lagrangian.
Some modification possibilities for objects at different scales:

• Cosmological scale: recall the CC Λ̄ > 0 (generally, V̄æ ̸= 0) ⇒ an effective halo
cutoff at rcut ∼ Υ/Λ̄1/2 ∼ (10−4 ÷ 10−2)× cosmological horizon scale, rcut ∼ 1÷ 100 Mpc,
Mhalo(rcut) ∼ (102 ÷ 104)MMW (see M(r) plots)

• Galactic scale: Vσ ̸= 0, Veff (σ) = Λ0e
−(1+2w̄ ′)σ + V0 +

m2

2 (σ − σ0)
2 + . . .

Veff (σ) has a local minimum if −m2

(1+2w̄′)2
eσ0−1/(1+2w̄′) < Λ0 < 0 ⇒ σ = σmin = const

(quasi-stable) solutions with asymptotically Minkowski (de Sitter) space exist. The Veff (σ)

minimum is not global ⇒ try to interpolate between the (modified) exceptional
solution and σ → σmin?
The interpolating solution is 5-parametric (can’t shift σ).
The scalar graviton δσ = σ − σmin becomes massive in the vicinity of σmin.

Some numerical examples with Vσ ̸= 0 on the next slides →
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Modification of the exceptional solution: Vσ = 0 back

Υ = 10−3, rg = 2GMMW /c2, Yσ/rg = −3, log10
(
rhe

σr
2 /0.02pc

)
= 3.91
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Modification of the exceptional solution: Vσ = m2/2 · (σ − σ0)
2 back

The same with Vσ ̸= 0: σ0 = 7.55, 1/m = 38.8 kpc ⇒ cutoff at rcut ≃ 20 kpc.
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Modification of the exceptional solution: Vσ = m2/2 · (σ − σ0)
2 back

The same with Vσ ̸= 0: σ0 = 5.55, 1/m = 14.4 kpc ⇒ cutoff at rcut ≃ 8 kpc.
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Degenerate dark hole: Λ0 = 0 (C = 1 gauge) back to the reciprocal gauge

The line element in the C = 1 gauge takes the form:

ds2 ≡ ḡµνdx
µdxν = A(r)dt2 − r2(sin2 θ dϕ2 + dθ2)− B(r)dr2

From Einstein–massless scalar equations 1, 2 one gets the static spherically symmetric solution
[Fisher 1948]:

A(r) = y1−b, B(r) =
1

y

(
1−

b

2
+

b

2y

)−2

, σ(r) = (1− b)σr log y + σ0 ,

where b = 1− 1/
√

1 + 2Υ2σ2
r and y satisfies the equation y = 1− rg

r
yb/2.

• “Geometric” gravitating energy/mass of the system reads:

Mg = 4πM2
Plrg (1− b)

• The apparent rotation velocity for a circular orbit with the radius r :

vrot(r) =

[
(1− b)

rg

2r

1

y1−b/2 + b rg/2r

]1/2
(Coordinate transformation from C = 1 to the reciprocal gauge recovers vrot in the reciprocal gauge.)

• The radial coordinate r is related to the one in the reciprocal gauge rrec as
r = rrec (1− rg/rrec )b/2. The parameters rg , σr and σ0 are the same as in the reciprocal gauge.
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An exact exceptional solution, Λ0 < 0 (C = 1 gauge)
The line element in the C = 1 gauge takes the form:

ds2 ≡ ḡµνdx
µdxν = A(r)dt2 − r2(sin2 θ dϕ2 + dθ2)− B(r)dr2

From Eqs. 1, 2 one has:

A(r) =

1 −
(

rg

r

)1+ 2Υ2

(1+2w̄′)2
( r

rh

) 4Υ2

(1+2w̄′)2

B(r) =

1 −
(

rg

r

)1+ 2Υ2

(1+2w̄′)2
−1

σ(r) =
2

1 + 2w̄′
log

r

rh

The radial coordinate r is related to the one in the reciprocal gauge
(rrec ) as

r
1+ 2Υ2

(1+2w̄′)2 = rrec · rc,rec
2Υ2

(1+2w̄′)2 .

The same relations for the rg and rh parameters:

r
1+ 2Υ2

(1+2w̄′)2
g = rg,rec · rc,rec

2Υ2

(1+2w̄′)2 ,

r
1+ 2Υ2

(1+2w̄′)2
h

= rh,rec · rc,rec
2Υ2

(1+2w̄′)2

The normalization of B(r) is fixed by the circle length asymptotic
condition.• The radial acceleration of a particle at rest:

d2r

ds2
= −Γr00

(
dt

ds

)2

= −
A′

2AB
= −

rg

2r2

[
1 +

2Υ2

(1 + 2w̄′)2

](
rg

r

) 2Υ2

(1+2w̄′)2 −
2Υ2

(1 + 2w̄′)2

1 −
(

rg

r

)1+ 2Υ2

(1+2w̄′)2
 1

r

• The apparent rotation velocity (coordinate
transformation to the reciprocal gauge recovers vrot
in the latter):

vrot (r) =


1

2

(1 + 2Υ2

(1+2w̄′)2
)r

1+ 2Υ2

(1+2w̄′)2
g

r
1+ 2Υ2

(1+2w̄′)2 − r
1+ 2Υ2

(1+2w̄′)2
g

+
2Υ2

(1 + 2w̄′)2


1/2

• “Geometric” energy/mass (non-gauge invariant):

Mg (r) = 4πM2
Pl

( rg
rh

) 2Υ2

(1+2w̄′)2
(
1 − 2Υ2

(1+2w̄′)2

)
rg +

+ 2 2Υ2

(1+2w̄′)2

(
r
rh

) 2Υ2

(1+2w̄′)2 r


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