Ther Role of Quarks in Nuclear Structure: α-clusterization and Nucleosythesis

Genis Musulmanbekov JINR, Dubna <u>genis@jinr.ru</u>

ICPPA-2024, MEPhI, 21.10.24 – 25.10.24

Content

- Motivation
- The model: Strongly Correlated Quark Model (SCQM)
 - Nucleon Structure
 - Nuclear Structure: SCQM+FCC
- Nucleosynthesis
 - Hoyle State
 - Hoyle-like 5 α -clusters state
- Summary

Motivation

Nucleosythesis of medium nuclei

- Hydrogen burning: $A \le 4$
- ¹²C the key element for nucleosynthesis Hoyle State
- Helium burning:

$$\alpha + \alpha \leftrightarrow {}^{8}\text{Be}^{*}$$

$$\alpha + {}^{8}\text{Be}^{*} \rightarrow {}^{12}\text{C}^{*}$$

$${}^{12}\text{C}^{*} \rightarrow \alpha + {}^{8}\text{Be}^{*} \text{ The most probable}$$

$${}^{12}\text{C}^{*} \rightarrow {}^{12}\text{C} + \gamma \text{ ???}$$

SCQM – Strongly Correlated Quark Model of Nucleon Structure

G. Musulmanbekov, "Quarks as Vortices in Vacuum" in book Frontiers of Fundamental Physics, Kluwer Acad./Plenum Pub., 2001, p. 109-120.

G. Musulmanbekov, "Hadron Modifications in a Dense Baryonic Matter" PEPAN Lett., Vol., № 5, 2021, p. 548-558

G. Musulmanbekov From quark and nucleon correlations to discrete symmetry and clustering in nuclei in Exotic Nuclei, Singapore: World Scientic, 2016, p. 58{66; http://arxiv.org/abs/1708.04437v2

\mathbf{QCD} – fundamental theory of strong interactions

- **Constituents of hadrons quarks** of different flavors carrying spin, charge, color.
 - flavors: u, d, s, c, b, t
 - spin: $\frac{1}{2}$
 - charge: $\frac{1}{3}$, $\frac{2}{3}$
 - color: SU(3)_{Color} $R, G, B, \overline{R}, \overline{G}, \overline{B}$
- Fields gluons perform interactions between quarks.
- Nucleons 3–quark (u/d), color-singlet systems
- **Mesons** quark-antiquark systems

QCD (cont.)

QCD is non-abelian theory

Hadronic processes with high Q^2

pQCD: $\alpha_{\rm S} < 1, m_{\rm q} \rightarrow 0$, chiral symmetry

Low energy hadron and nuclear physics

non-pQCD: $\alpha_{s} > 1, m_{q} \neq 0$, chiral symmetry breaking

- Low energy approx. of QCD, effective theories., ...
- QCD-inspired phenomenology
 - NR constituent quark models
 - Bag models
 - Chiral quark models
 - Soliton models

quark – antiquark pair

Quarks – Solitons

SCQM = Breather Solution of Sine-Gordon equation

Breather – oscillating soliton-antisoliton pair, the periodic solution of SG:

is identical to our quarkantiquark system.

The SCQM

Hamiltonian of the quark – antiquark system

 $m_{\overline{q}}, m_{q}$ - current masses of quarks, $\beta = \beta(x)$ - velocity of the quark (antiquark), $V_{\overline{q}q}$ - quark-antiquark potential.

 $U(x) = \frac{1}{2} V_{\bar{q}q}(2x) = m \tanh^2(ax)$ is the potential energy of a single quark/antiquark.

Quark Potential Force of quark-antiquark interaction

quark-antiquark pair meson

QCD: Exchange by gluons $\sqrt{\frac{1}{2}} (RR BB)$

SCQM: Overlap of color fields

Generalization to the 3 – quark system (baryons)

Nucleon as 3 oscillating color quarks

"The wave packet solution of time-dependent Schrodinger equation for harmonic oscillator moves in exactly the same way as corresponding classical oscillator" *E. Schrodinger, 1926*

Dynamic Breaking-Restoration of Chiral Symmetry

U(x) > I - constituent quarksU(x) < II - current (relativistic) quarks

Interplay between constituent and current quark statesChiral Symmetry BreakingRestoration

During the valence quarks oscillations:

SCQM vs QCD

Parameters of SCQM for the Nucleon

1.Mass of Consituent Quark

2.Amplitude of VQs oscillations : $x_{max} = 0.64 \text{ fm}$,

3.Constituent quark dimensions (parameters of gaussian distribution): $\sigma_{x,y}=0.24 \text{ fm}, \sigma_z=0.12 \text{ fm}$

Parameters 2 and 3 are derived from comparison of Inelastic Overlap Function (IOF) and σ_{tot} in p p and pp – collisions.

Nucleons are nonspherical, triangular shaped! They are three-colored objects!

19

Quark Arrangements inside Nuclei

Two Nucleon System in SCQM

Interaction between nucleons is due to **overlap** of their quark color fields

Antisymmetrization

We need to define isospins, spins and colors at junctions ⁴He: 4 nucleons = 12 quarks in s-state

Antisymmetrization

 $SU(12) \longrightarrow SU(2) \underset{isospin}{\otimes} SU(2) \underset{spin}{\otimes} SU(3)_{color}$

But ~ 90% of 3-quark clusters are colored states (*Matveev, Sorba, 1978*) We select colorless 3-quark clusters by combinatorics imposing the following requirements to isospins, spins and colors at junctions: $SU(2)_{isospin} - of different flavors (assumed)$ $SU(2)_{spin} - of parallel spins (calculated)$

 $SU(3)_{color}$ – of different colors (assumed)

Two Nucleon System in SCQM

Quark Potential Inside Nuclei

23

Building blocks in Shell Structure

³He – block

The closed shell n = 0, nucleus ⁴He

Antisymmetisation of 12 quarks in SU(12) state $SU(2)_{I} \times SU(2)_{S} \times SU(3)_{C}$

Totally antisymmetrized 4 nucleons in s-state

Shell Closure

Selection rules for binding two quarks of neighboring nucleons at a junction:

- $SU(2)_{Isospin}$ of different flavors
- $SU(3)_{Color}$ of different colors
- $SU(2)_{Spin}$ of parallel spins

n

n

Experimental Binding Energy of Stable Nuclei and Quark Loops in SCQM

Nucleus	E _B MeV/junct. Exp.	Number of quark loops	Free quark ends	Nuclear forces
d	2.05	0	4	2-body
³ Н	2.83	1	3	3-body
³ Не	2.57	1	3	3-body
⁴ He	7.07	4	0	4-body

The more quark loops, the stronger the binding energy!

The closed shell n = 0, nucleus ⁴He

Yellow – protons are on opposite faces of upper piramid Blue – neutrons are on another faces of below lower piramid

Building blocks in Shell Structure

Forms Neutron Halo

⁶He, borromean

⁸He, borromean

www.Bandicam.com

Next closed shell n = 1, ¹⁶O

¹⁶**O**

RED – s-shell YELLOW – p-shell

¹⁶**O**

Yellow – protons **Blue** – neutrons

The closed shell n = 2, ⁴⁰Ca Shell Closure Faces of ⁴⁰Ca octahedron р n **∛He** 3 n n р р p р р n n n

⁴⁰Ca

s-shell – red
p-shell – yellow
d-shell -- magenta

⁴⁰Ca

Yellow – protons **Blue** – neutrons

3 Nested Octahedra – s, p, d -shells

SCQM to FCC symmetry

- Nuclear shells correspond to faces of nested octahedra
- Nucleons are arranged in alternating isospin and spin layers
- Protons and neutrons are strongly correlated
- It turned out that nucleons occupy the nodes of Face Centered Cubic Lattice (FCC)
- All bound nuclei are composed of virtual ³H- and ⁴He-like clusters

¹²C 6 protons, 6 neutrons

Problem for SM: Why ¹²C is so stable?

Virtual α-clusters

$^{12}C - 4$ virtual α -clusters

- 4 nucleons of *s*-shell (red) form with
 6 nucleons of *p*-shell (yellow) 4 virtual α-clusters.
- *s*-shell nucleons are exchange particles

42

Crosswise bindings of 4 virtual α-clusters by exchange (red) nucleons of s-shell

- exchange nucleons acquire larger binding energy as belonging simultaneously to 2 alpha clusters
- s-shell core is rearranged and disappears

43

Hoyle State

⁸Be - 2 Loosely bound α- clusters

Neutrons of the right α -cluster are bound with protons of central α -cluster (like in ⁶He)

Hoyle State

$^{12}C^*\text{-}$ 3 Loosely bound $\alpha\text{-}$ clusters

Neutrons of left and right α -clusters are bound with protons of central α -cluster (like in ⁸He), and their 2 nearest protons are bound together. Bonds between α -clusters are depicted by dashed lines.

Hoyle State to ¹²C

Hoyle-like States

Ikeda diagram

Mass number

Nucleosynthesis in SCQM ⁴He burning ²⁰Ne*- Key Nucleus for nucleosynthesis

$^{20}\text{Ne}^* \rightarrow ^{20}\text{Ne} + 19.7 \text{ MeV}$

²⁰Ne g.s

 20 Ne* \rightarrow 16 O + 2p + 2n

¹⁶O g.s

 20 Ne* \rightarrow 14 N + 3p + 3n

¹⁴N g.s

20 Ne* \rightarrow 12 C + 4p + 4n

¹²C g.s

Conclusions

- Hoyle State ${}^{12}C^*$ does not lead to ${}^{12}C$ g.s.
- ¹²C g.s is not the Key nucleus for the Nucleosynthesis
- Hoyle-like 5-α state is the Key state for the Nucleosynthesis

Thank you for your attention!

Back Slides

"Elementary particles are no more than holes in vacuum."

SCQM

Henry Poincare

Single Colored Quark inside Vacuum

Strongly Correlated Quark Model (SCQM)

Overlap of opposite color fields \rightarrow attraction force between quark and antiquark "Color Casimir" effect

Nucleon

Nucleon wave function composed of color quarks

Where $|c_i\rangle$ are orthonormal states with *i*,*j*,*k* \rightarrow R,G,B

61

SCQM \implies The Local Gauge Invariance Principle

Destructive Interference of color fields = Phase rotation of the quark w.f. in color space:

$$\psi(x)_{Color} \to e^{ig\theta(x)}\psi(x)$$

Phase rotation in color space \implies quark dressing (undressing) = the gauge transformation

 $A^{\mu}(x) \to A^{\mu}(x) + \partial^{\mu}\theta(x)$

Therefore, during quark oscillation its

color charge

momentum

mass

g1

are continuously varying function of time.

Relation SCQM to QCD

We reduce interaction of color quarks via **non-Abelian** fields to its **E-M** analog:

$$A_{a}^{\mu}(x) \to A^{\mu}(x)$$

$$F_{a}^{\mu\nu} = \partial^{\mu}A_{a}^{\nu} - \partial^{\nu}A_{a}^{\mu} - \lambda f^{abc}A_{b}^{\mu}A_{c}^{\nu} \to F_{ch}^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$$

3 Nested Octahedra – s, p, d -shells

FCC-SCQM vs SM

Source of spin-orbital coupling in FCC-SCQM

Increasing number of exchange nucleons, belonging to adjacent virtual alpha clusters with increasing J-value of sub-shells.

Lowering of levels with higher J Splitting of nuclear levels

FCC-SCQM vs SM What about magic numbers?

SM

Describes observed magic numbers of protons and neutrons

2, 8, 20, 28, 50, 82, 126

FCC-SCQM

Closed Shells – Octahedra with filled faces

2, 8, 20, 40, 70, 112, ... as given by HO potential

FCC-SCQM vs SM What about magic numbers?

SM: 2, 8, 20, 28, 50, 82, 126

FCC-SCQM: 2, 8, 20, 40, 70, 112, ...

- But, in FCC-SCQM the more preferable to start filling the next shell by the subshell with highest J (from the base of octahedron).
- If these subsells are filled, we get the following magic numbers:

2, 6, 8, 14, 20, 28, 40, 50, 70, 82, 112, 126, ...

- **Red numbers** arise from adding to filled faces (shell) of octahedra the subshells with highest value J.
- However, takes place only if both protons and neutrons fill this subshells forming virtual alpha clusters.

The role of Quarks in FCC

- Color fields of Quarks, responsible for strong interactions, arrange nuclear nucleons in FCC Lattice structure.
- Strong interactions are **tensorial**
- Quark loops form virtual 3- and 4-nucleon clusters inside bound nuclei
- Evidence of quark loops is **big separation energy** in even-even nuclei
- Halo nuclei are formed by core and virtual 3-nucleon clusters (³H-type)
- Ground state nuclei are formed by virtual ³H- and ⁴Hetype clusters.
- There are no real ⁴He cluster in ground state nuclei

Summary (cont.)

Quantization

Rigid body quantization

As a rigid body Nuclei can possess:

-particle - hole excitations

-collective modes of excitations

- Shape vibrations and fluctuations
- Rotations
- Isospin vibrations
- Sissor fluctuations

Bound Hydrogen Isotopes

¹²C Hoyle state Borromean nucleus Loosely bound 3 real α- cluster nucleus

Frames of α -clusters are depicted as tethrahadrons. Neutrons of left and right α -clusters are bound with protons of central α -cluster (like in ⁸He), and their 2 nearest protons are bound together.

FCC-SCQM vs SM Spin-orbital coupling

In SCQM Increasing number of exchange nucleons leads to **Lowering** of levels with higher **J**

J= 1/2

J = 1/2, 3/2

J = 1/2, 3/2, 5/2

s: n=0, l=0 1 alpha

s: n=1, l=1 6 virtual alpha

s: n=2, l=0, 2 22 virtual alpha

FCC-SCQM vs SM What about spin-orbital coupling (SOC)?

SOC

- Splitting of nuclear levels
- Lowering of levels with higher J
- Description of observed magic numbers of protons and neutrons
- 2, 8, 20, 28, 50, 82, 126

Is it possible get the same numbers in FCC-SCQM? YES !

Summary

- Quarks play an explicit role in formation of the nuclear structure.
- Quark loops are building blocks of nuclear binding.
- Quarks and nucleons (protons and neutrons) inside nuclei are strongly correlated.
- 'Halo' nuclei **fruits of quark-loop bindings**
- Effect of quark looping: $E_{sep} < E_{bound}/A$

74
Three Nucleon Systems in SCQM

Quark loop formed by 3 nucleons \rightarrow 3–body force

75

Helium Isotopes Borromean Nuclei

Exp. G.Alkhazov et al, PEPAN, 53 (2022) 661 77

Fluorine Isomers

