

I. N. Borzov 1,2

1 National Research Centre "Kurchatov Institute", Moscow, Russia 2 Bogolubov Laboratory of Theoretical Physics JINR, Dubna, Russia

Charge radii and β -decay properties of heavy Hg and Pt isotopes

Precision laser spectroscopy of the hyper-fine splitting spectra and beta-decay measurements at RIB facilities have made a great progress nowadays.

> This calls for theoretical studies of different nuclear observables in a single self-consistent framework.

> > ICPPA, MEPhI, 22-25. 10. 2024

Charge radii and β -decay half-lives "south-east" of 208Pb

80Hg, 78Pt isotopes with one and 2 pairs of protons removed from Z=82.

They are well suited for EDF studies of isotopic dependence of $\delta < r^2 > (N,N')$ and beta-decay T1/2.

Self-consistent Finite Fermi Systems theory (FFS) is used with the Fayans density functional (effective mass $m^*=1$). This EDF family describes exp. q-p levels near ε_{Fermi} .

It will be shown that the ordering of neutron levels above N=126 is important for formation of the so-called "kink" in dms radii.

Also it is decisive for the competition between the Gamow-Teller (GT) and high-energy first-forbidden (FF) decays for nuclei "south-east " of 208Pb.

? Is it possible to simultaneously describe the radii and beta-decay half-lives in the RMF and FFS models (i.e. with and without the qp-levels inversion).

In RMF, the kink in charge radii at N=126 is due solely to inversion of n2g9/2 –n1i11/2 (which contradicts to the exp.data).

Exp.	DF3-a
-2.51	n 1j 15/2 -2.60
-3.16	n 1i 11/2 -3.12
-3.94	n 2g9/2 -3.66

Experiment : $E(g_{9/2}) - E(i_{11/2}) = -780 \text{ keV}$

Using the RMF model with inverted g and i levels leads one to a conclusion that "pairing is not that important for the kink".

Is that so ?

U. C. Perera ,A. V. Afanasjev , and P. Ring. Charge radii in covariant density functional theory: A global view Phys.Rev. C **104**, 064313 (2021)

Origin of kink in Pt chain at N>126: DF3-a

DF3-a produces no i –g inversion; Pairing dependence on the density gradient is important.

The occupancy N_{λ} of $2g_{9/2}$ is bigger than the N_{λ} for high-spin orbitals.

Pairing correlations change the particle numbers N_{λ} .

This affects both charge radii, as well as beta-decay strength functions.

$$B(GT^{-}) \sim [n_{\lambda}^{(n)} - n_{\lambda}^{(p)}] * 8l(l+1)/(2l+1)/(2l+1)/(2m-1)/(M/n)^{2}$$

B(GT) depends both on occupancies n_{λ} and orbital momentum *l*. Thus, it is important which orbital has to be filled first: $2g_{9/2}$ or $1i_{11/2}$

The TFFS-DF3-a calculations of $\delta < r^2 > (N, 126)$ compared with the experiment for the 80Hg, 78Pt isotopes for N approaching N = 126 and above.

CHARGE RADII OF THALLIUM ISOTOPES NEAR ...

Charge radii of thallium isotopes near the N = 126 shell closure

Z. Yue⁹,^{1,*} A. E. Barzakh⁹,[†] A. N. Andreyev⁹,^{1,2,‡} I. N. Borzov⁹,[§] J. G. Cubiss⁹,¹ A. Algora,³ M. Au⁹,^{2,4} M. Balogh,⁵ S. Bara,⁶ R. A. Bark,⁷ C. Bernerd,^{2,6} M. J. G. Borge⁹,⁸ D. Brugnara⁹,⁵ K. Chrysalidis,^{2,4} T. E. Cocolios,⁶ H. De Witte,⁶ Z. Favier,² L. M. Fraile⁹,⁹ H. O. U. Fynbo,¹⁰ A. Gottardo,⁵ R. Grzywacz,¹¹ R. Heinke,² A. Illana⁹,^{12,13} P. M. Jones,⁷ D. S. Judson,¹⁴ A. Korgul,¹⁵ U. Köster,^{2,16} M. Labiche,¹⁷ L. Le,² R. Liča,^{2,18} M. Madurga,¹¹ N. Marginean,¹⁸ B. A. Marsh,² C. Mihai,¹⁸ E. Nácher,³ C. Neacsu,¹⁸ C. Nita,¹⁸ B. Olaizola⁹,^{2,8} J. N. Orce,¹⁹ C. A. A. Page⁹,¹ R. D. Page⁹,¹⁴ J. Pakarinen,^{2,12,13} P. Papadakis,¹⁷ A. Perea,⁸ M. Piersa-Siłkowska,²⁰ Zs. Podolyák⁹,^{2,21} E. Reis,^{2,22} S. Rothe,² M. Sedlak,⁵ C. Sotty,¹⁸ S. Stegemann,² O. Tengblad,⁸ S. V. Tolokonnikov,[§] J. M. Udías,⁹ P. Van Duppen,⁶ N. Warr⁹,²³ and W. Wojtaczka⁶ (IDS Collaboration)

In-gas-cell laser resonance ionization spectroscopy of 200,201Pt

Y. Hirayama⁽⁾,^{1,*} M. Mukai,² Y. X. Watanabe⁽⁾,¹

et.al (KISS Collaboration)

Kink indicators for Hg - Bi

$$\xi = \frac{\delta \langle r^2 \rangle^{128,126}}{\delta \langle r^2 \rangle^{126,124}}.$$

The TFFS (DF3-a) calculations reproduce the experimental rink ξ -indicators in Hg -Bi.

RMF-DD-MEX functional predicts a noticeable Z dependence of the kink indicator which is not observed experimentally.

The other three RMF functionals overestimate the shell effect in radii

PHYSICAL REVIEW C 110, 034315 (2024)

How well do we know the beta-half-lives near N=126?

Beta-decay of nuclei near the neutron shell N=126 I.N. Borzov, Physics of Atomic Nuclei 74, 1435-1444 (2011). 760s, 77Ir, 78Pt, 79Au Gamow-Teller and $\Delta J=0,1$ (FF) beta-decay "south-east" of 208Pb. For ⁷⁸Pt, ⁸⁰Hg at N>126, the β -decay rates are sensitive to the g - i orbitals ordering!

At N<126, the GT decays - n1h 9/2 -> p1h11/2, and FF n1i13/2 $\rightarrow p1h11/2$, are possible.

At $N \ge 126$, new GT and cross-shell FF transitions are opened due to pairing.

At N>126 the main competing GT and FF transitions:: high-energy (cross-shell) FF n2g9//2; n1i11/2->p1h11/2 and lower energy GT transition n1i11/2->p1î13/2. It is decisive which orbital is filled first: $2g_{9/2}$ or $1i_{11/2}$

Energetics of 204-212Hg isotopes. % FF transitions.

$$\lambda_{total} = \lambda_{GT} + \lambda_{FF}$$

$$\% FF = 100^* \lambda_{FF} / \lambda_{total} = (T_{GT} - T_{total}) / T_{GT}$$

The energies of the high-energy FF (spin-dipole) transitions with $\Delta J=1$ and $\Delta J=0$ are close to the Qbeta-values. Thus, the phase-space factor amplifies their contribution to the T1/2. In Hg isotopic chain the contribution of the FF decays to T1/2 is % FF(DF3-a) = 40-50 %. A competition between low-energy GT-pygmy resonances and high-energy FF decays.

In the Relativistic QRPA (T. Marketin, et.al.. Phys. Rev. C 93, 025805 (2016).), the %FF is much higher.

Beta-decay half-lives and Pn-values for Hg isotopes. DF3-a (with no inversion) vs. RMF (with g-i inversion)

For ²⁰⁶⁻²¹¹ Hg, The DF3-a+CQRPA is closer to the exp. than RHB

Relativistic HB+RQRPA (DD-ME2 functional) underestimates T1/2 by the factor of 5 to 100. The delayed neutron emission Pn(N) ~ const.

T. Marketin, L. Huther, and G. Martínez-Pinedo. Phys. Rev. C 93, 025805 (2016).

FAM (not shown)— overestimate T1/2 (factor 2 to 100

*Q*β, Sn for RMF calculation.... not known ...? But the RMF qp-spectrum has g-i inversion.

Irregularity of T1/2 for 209 Hg ?

New CERN-ISOLDE exp. run for 210-211 Hg in 2024

Conclusions

- For Pt, Hg isotopes near and above N=126, the self-consistent DF3-a and CQRPA calculations are done for geometric (R_charge), energetics (Q_β), as well as magnetization and beta-decay properties (T1/2, Pn).
- For Pt and Hg isotopes, the charge **radii kink indices at** crossing N=126 magic shell
- are well enough described from DF3-a. The accuracy, is the same, as in our previous calculations in the TI to Bi isotopes (Z=81-83).

Z. Yue, A. E. Barzakh, A. N. Andreyev, I. N. Borzov, et.al. PHYSICAL REVIEW C 110, 034315 (2024).

The half-lives for the Pt, Hg isotopes are compared with the IAEA compilation (2017) and NUBASE 2020. It is concluded that:

- In the TFFS + Fayans one can simultaneously describe the experimental s.p spectra, as well as the charge radii, (magnetic moments) and beta-decay characteristics.
- In the relativistic RHB+RQRPA calculations (Afanasjev et al.) that is not possible mainly due to inversion of the 2ng9/2 and 1ni11/2 levels.

Acknowledgments

A.N. Andreev, A.E. Barzakh for collaboration and info on their experiments in CERN.

S.V. Tolokonnikov for fruitful discussions.

Российский научный фонд

Grant 21-12-000-161, 2021 - 2023

Beta-decay half-lives and Pn-values for Pt isotopes

Factor of 3 - 5 difference in T1/2 at N>126

Phys.Rev. C 106, 034326 (2022);

Eur. Phys. J. Spec. Top. 233, 1209 (2024).

Energetics of 205-212Hg isotopes and %FF

The energies are given with respect to the parent g.s.

The DF3-a calculations well describes Q_{β} for 204Hg (stable isotope, exp. abundance 6.87%).

The GT pygmy-resonance enters the window at A=205 ($|Q_{\beta}|$ = 1.5 MeV). The energies of the FF (spin-dipole) transitions with ΔJ =1 and ΔJ =0 are close to the Qbeta-values.

For RHB the calculated Qbeta-values are not published, for FAM – the odd-even effect is too strong.