THE 7TH INTERNATIONAL CONFERENCE ON PARTICLE PHYSICS AND ASTROPHYSICS

Converters of very cold and ultracold neutrons: Monte Carlo simulation of their properties and specifics of available data libraries and software

> Pham K. T.*, Nezvanov A.Yu., Muzychka A.Yu. *PhD student Landau Phystech-School of Physics and Research, Moscow Institute of Physics and Technology (MIPT) Email: kham.kt@phystech.edu

22 - 25 October 2024, Moscow, Russia

Contents

- 1. Introduction of VCN and UCN and their applications
- 2. Several main tasks on the concept of low energy source
- 3. Simulation implementation
- 4. Simulation results
- 5. Conclusion

1. Introduction of VCN and UCN and their applications (1)

(a)

(b)

Sketch of UCN traps: (a) A material trap using a material reflector, (b) A magnetic trap.

Ref.: Oh-Sun Kwon (2005), Sogang University. Quasi-elastic scattering of ultracold neutrons (Dissertation).

Type of neutron	E (eV)	Т (К)	Λ (Å)	V (m/s)
Ultra cold	< 10 ⁻⁷	≈(<) mK	> 800	< 5
Very cold	10 ⁻⁷ - 10 ⁻⁴	10 ⁻² - 10	800 - 30	5 - 130
Cold	(0.1 - 10) x 10 ⁻³	10 - 120	30 - 3	130 - 1320
Thermal	(10 - 100) x 10 ⁻³	120 - 1000	3 - 1	~ 1320 - 3950
Resonance	> 1		< 0.1	> 4 x 10 ⁴

Ref.: G.V. Kulin (ISINN-29). The concept of an UCN source for a periodic pulsed reactor (2023).

1. Introduction of VCN and UCN and their applications (2)

VCN

- For studying the structure and dynamics of materials via neutron scattering and imaging techniques
- For studying low-energy vibrational states
- Search for neutron-antineutron oscillation

UCN

- Search for the neutron electric dipole moment (EDM)
- Measurement of the neutron lifetime
- Measurement of angular correlation coefficients of neutron beta decay
- Search for neutron-antineutron oscillations
- Quantization of neutron sates in gravitational field and search for new interactions
- > Non-stationary quantum mechanics and neutron optics

The history of neutron EDM limits Ref.: Abel, C.; et al. (2020)

2. Some main tasks on the concept of low energy source

As part of the work on the concept of the source, priorities will be:

- 1. Simulation of the production of very cold neutrons (VCN) in various converters/materials for optimizing their parameters and increasing the efficiency of VCN extraction from the source.
- 2. Design and development of the required experimental equipment to carry out an experiment to measure the extraction efficiency of VCNs from a source with a specially designed reflector.
- 3. Analysis of possible candidate materials for use as UCN converter, considering the specifics of the planned source.
- 4. Modeling of the converter, calculation of the UCN output from it and optimization of its geometry.
- 5. Participation in the formation of technical requirements and in the design of a UCN converter unit.

3. Simulation implementation (1)

Particle and Heavy Ion Transport code System

Capability: Transport and collision of nearly all particles (neutron, proton, ions, electron, photon, etc.) over wide energy range (10⁻⁵ eV/n to 1 TeV/n) using Monte Carlo method

Version: PHITS 3.341 Library: JENDL-5 (ACE-J50) Library Format of TSL files: ACE

Facility Design https://phits.jaea.go.jp/library.html

Radiation Therapy & Protection

Thermal Scattering Law data (TSL)

- h20.7z: H2O (H in H2O/ O in H2O)
- <u>ch.7z</u>: CxHx (C, H, O in Benzen, Ethanol, Mesitylene, M-Xylene, Toluene, Triphenylmethane, etc.)
- cold.7z: Para H, Ortho H, Para D, Ortho D
- https://phits.jaea.go.jp/library.html

sod2-05K: sD2 (at 5 K)

Developed by the spallation-physics-group Link: https://git.esss.dk/spallation-physics-group/phits-tsl/-/tree/main/mixed/solid_deuterium?ref_type=heads

Space & Geoscience

3. Simulation implementation (2)

The sD₂ TLS library based on the neutron scattering kernel proposed by Granada J.R.

The main characteristics of Granada's model including:

- The lattice's density of states
- The Young-Koppel quantum treatment of the rotations
- The internal molecular vibrations
- The elastic processes involving coherent and incoherent contributions are fully described, as are the spincorrelation effects

 $S(\mathbf{Q},\omega) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \mathrm{d}t \, e^{-i\omega t}$ $\times \left\langle \sum_{l,l'} \sum_{\nu,\nu'} \overline{a_{l\nu}^* a_{l'\nu'}} \exp\left\{-i\mathbf{Q} \cdot \mathbf{R}_{l\nu}(0)\right\} \exp\left\{i\mathbf{Q} \cdot \mathbf{R}_{l'\nu'}(t)\right\} \right\rangle$ (1)

The intermediate scattering function $\chi(Q,t)$

Where:

v(Q,t) contains all the complexity associated to <u>the molecular</u> <u>rotations</u> with definite parity for each (ortho, para) molecular species. $I_s(Q,t)$ is the self-contribution of the molecular centers determined by the dynamics of the lattice in the case of solid systems The elastic term $\chi^{el}(\mathbf{Q}, 0) = 4b_c^2 j_0^2 (Qr/2) |F(\mathbf{Q})|^2 \chi^{vib}(\mathbf{Q}, 0) \quad \text{(Elastic Coherent)} \\ +2(1+\alpha) b_i^2 \chi^{vib}(\mathbf{Q}, 0) \quad \text{(Elastic Incoherent)} \quad \textbf{(2)}$

The incoherent approximation for the inelastic term $\chi^{inel}(\mathbf{Q},t) = v(\mathbf{Q},t) \cdot I_s(\mathbf{Q},t) \cdot \chi^{vib}(\mathbf{Q},t)$ (3)

|F(Q,0)| is the lattice structure factor corresponding to the arrangement of molecular centers

χ^{vib}(**Q**,**0**) is the Debye-Waller factor

4. Simulation results (1/7)

Total scattering cross section per atom for sD_2 at 5 K as a function of incident energy

4. Simulation results (2/7)

d₀/dE [arib. units]

An example of a dynamical neutron crosssection of solid D₂ at T = 7 K. Comparison of two ortho-concentrations C₀ = 66.7% (\Box) and C₀ = 98% (\circ). Initial energy of the thermal neutrons is E₀ = 20.4 meV.

A comparison between simulation result with A. Frei's result.

Note: The TLS library used for the simulation was developed for pure ortho- D_2 at 5 K

4. Simulation results (3/7)

E₀ (meV)	Velocities (m/s)	VCN production cross section (mb)
20.4	50 - 75	1.6991E-01
	75 - 100	3.0807E-01
	100 - 125	5.4464E-01
	125 - 150	7.9014E-01
	150 - 175	1.0660E+00
	175 - 200	1.4058E+00

VCN production crosssection approximation: $\sigma_{VCN} = \sigma_{UCN} \left(\frac{V_{VCN}}{V_{UCN}} \right)$

 $V_{UCN} = 5.3567$ m/s (150 neV); $\sigma_{UCN} = 0.75E-7$ b. [0, V_{VCN}] – the VCN production range.

4. Simulation results (4/7)

Materials

N⁰	Material	Density (g/cm3)	Temperature (K)
1	Solid Deuterium (sD ₂)	0.206	5
2	Liquid Deuterium (ID ₂)	0.1638	20
3	Parahydrogen	0.0708	20
4	Mesitylene	0.5184	20
5	Ice (H ₂ O)	0.9325	115

Incident neutron energy

Date = 17:49 20-Sep-2024

plotted by AnGgL 4.51

20

emin = 1.0000E-11 [MeV] emax = 1.0000E-06 [MeV]

zmin = -1.0000E+01 [cm] zmax = 1.0000E+01 [cm]

part. = neutron

Neutron velocity range

Wavelength	Incident Energy	Velocity (m/s)	E (meV)
(A)	(meV)	50	0,01306759
1	81,8042	60	0,01881733
2	20,45105	70	0,02561248
3	9,089355	80	0,03345304
4	5,112762	90	0,042339
5	3,272168	100	0,05227037
6	2,272339	110	0,06324715
7	1,669473	120	0,07526933
8	1,278191	130	0,08833692
9	1,009928	140	0,1024499
10	0,818042	150	0,1176083
11	0,6760678	160	0,1338121
12	0,5680847	170	0,1510614
13	0,4840485	180	0,169356
14	0,4173684	190	0,188696
15	0,3635742	200	0,2090815
16	0,3195477		
17	0,2830595		
18	0,2524821		
19	0,2266044		

0,2045105

4. Simulation results (5/7)

The VCN production cross section for solid deuterium and liquid deuterium

4. Simulation results (6/7)

The VCN production cross section for ice and parahydrogen

4. Simulation results (7/7)

The VCN production cross section for mesitylene

5. Conclusion

- Low-energy neutrons have been an extremely productive tool for researches in condensed matter physics, fundamental physics, chemistry, novel materials and life science
- Many projects and research on the development of low-energy neutron sources are being implemented actively in the world
- The production of UCN and VCN for some material was investigated using Monte Carlo code combined with available cross section data
- The existing libraries are insufficient to provide the necessary data for simulations involving the production and transport of UCN
- The need to extend the neutron energy range in the cross section libraries to the UCN energy range for further research regarding UCN
- The investigation contributes to selecting suitable materials for the development of intense low-energy neutron sources and optimizing source design

