THE 7TH INTERNATIONAL CONFERENCE ON PARTICLE PHYSICS AND ASTROPHYSICS

Converters of very cold and ultracold neutrons: Monte Carlo simulation of their properties and specifics of available data libraries and software

> **Pham K. T.*, Nezvanov A.Yu., Muzychka A.Yu.** *PhD student Landau Phystech-School of Physics and Research, Moscow Institute of Physics and Technology (MIPT) Email: kham.kt@phystech.edu

22 - 25 October 2024, Moscow, Russia

Contents

- 1. Introduction of VCN and UCN and their applications
- 2. Several main tasks on the concept of low energy source
- 3. Simulation implementation
- 4. Simulation results
- 5. Conclusion

reflector

 (a)

Ref.: Oh-Sun Kwon (2005), Sogang University. Quasi-elastic scattering of ultracold neutrons (Dissertation).

1. Introduction of VCN and UCN and their applications (1)

Ref.: G.V. Kulin (ISINN-29). The concept of an UCN source for a periodic pulsed reactor (2023). Sketch of UCN traps: (a) A material trap using

 (b)

1. Introduction of VCN and UCN and their applications (2)

VCN

- \triangleright For studying the structure and dynamics of materials via neutron scattering and imaging techniques
- \triangleright For studying low-energy vibrational states
- \triangleright Search for neutron-antineutron oscillation

UCN

- \triangleright Search for the neutron electric dipole moment (EDM)
- \triangleright Measurement of the neutron lifetime
- Measurement of angular correlation coefficients of neutron beta decay
- \triangleright Search for neutron-antineutron oscillations
- Quantization of neutron sates in gravitational field and search for new interactions
- \triangleright Non-stationary quantum mechanics and neutron optics

The history of neutron EDM limits Ref.: Abel, C.; et al. (2020)

2. Some main tasks on the concept of low energy source

As part of the work on the concept of the source, priorities will be:

- 1. Simulation of the production of very cold neutrons (VCN) in various converters/materials for optimizing their parameters and increasing the efficiency of VCN extraction from the source.
- 2. Design and development of the required experimental equipment to carry out an experiment to measure the extraction efficiency of VCNs from a source with a specially designed reflector.
- 3. Analysis of possible candidate materials for use as UCN converter, considering the specifics of the planned source.
- 4. Modeling of the converter, calculation of the UCN output from it and optimization of its geometry.
- 5. Participation in the formation of technical requirements and in the design of a UCN converter unit.

3. Simulation implementation (1)

Particle and Heavy Ion Transport code System

Capability: Transport and collision of nearly all particles (neutron, proton, ions, electron, photon, etc.) over wide energy range (10-5 eV/n to 1 TeV/n) using Monte Carlo method

Version: PHITS 3.341 **Library:** JENDL-5 (ACE-J50) Library **Format of TSL files:** ACE

https://phits.jaea.go.jp/library.html

Facility Design **Example 2** Radiation Therapy & Protection

Thermal Scattering Law data (TSL)

- **[h2o.7z](https://meteor.nucl.kyushu-u.ac.jp/jendl5/h2o.7z)**: H2O (H in H2O/ O in H2O)
- **[ch.7z](https://meteor.nucl.kyushu-u.ac.jp/jendl5/ch.7z)**: CxHx (C, H, O in Benzen, Ethanol, Mesitylene, M-Xylene, Toluene, Triphenylmethane, etc.)
- **[cold.7z](https://meteor.nucl.kyushu-u.ac.jp/jendl5/cold.7z)**: Para H, Ortho H, Para D, Ortho D
- https://phits.jaea.go.jp/library.html

sod2-05K: sD2 (at 5 K)

Developed by the spallation-physics-group Link: https://git.esss.dk/spallation-physics-group/phits-tsl/- /tree/main/mixed/solid_deuterium?ref_type=heads

Radial direction [

Space & Geoscience

6

3. Simulation implementation (2)

The sD2 TLS library based on the neutron scattering kernel proposed by **Granada J.R.**

The main characteristics of Granada's model including:

- The lattice's density of states
- The Young-Koppel quantum treatment of the rotations
- **❖ The internal molecular vibrations**
- The elastic processes involving coherent and incoherent contributions are fully described, as are the spincorrelation effects

 $S(\mathbf{Q}, \omega) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dt \, e^{-i\omega t}$ (1) $\times \Bigg\langle \sum_{l,l'}\sum_{\nu,\nu'} \overline{a^*_{l\nu} a_{l'\nu'}} \exp\left\{-i\mathbf{Q}\cdot\mathbf{R}_{l\nu}(0)\right\} \exp\left\{i\mathbf{Q}\cdot\mathbf{R}_{l'\nu'}(t)\right\} \Bigg\rangle$

Where:

v(Q,t) contains all the complexity associated to **the molecular rotations** with definite parity for each (ortho, para) molecular species. *I_s(Q,t)* is the self-contribution of the molecular centers determined by the dynamics of the lattice in the case of solid systems

The elastic term $\chi^{el}(\mathbf{Q},0) =$ $4b_c^2 j_0^2 (Qr/2)|F(\mathbf{Q})|^2 \chi^{vib}(\mathbf{Q},0)$ (Elastic Coherent) (2) $+2(1+\alpha) b_i^2 \chi^{vib}(\mathbf{Q},0)$ (Elastic Incoherent)

The intermediate scattering function $\chi(Q,t)$ The incoherent approximation for the inelastic term $\chi^{inel}(\mathbf{Q},t) = v(\mathbf{Q},t) \cdot I_s(\mathbf{Q},t) \cdot \chi^{vib}(\mathbf{Q},t)$ (3)

> **|F(Q,0)|** is the lattice structure factor corresponding to the arrangement of molecular centers

χvib(Q,0) is the Debye-Waller factor

4. Simulation results (1/7)

Total scattering cross section per atom for sD_2 at 5 K as a function of incident energy

4. Simulation results (2/7)

d_o/dE [arib. units]

An example of a dynamical neutron crosssection of solid D_2 at T = 7 K. Comparison of two ortho-concentrations $C_0 = 66.7\%$ (\Box) and C_0 = 98% (\circ). Initial energy of the thermal neutrons is $E_0 = 20.4$ meV.

Ref.: A. Frei et al.. doi: 10.1209/0295-5075/92/62001

A comparison between simulation result with A. Frei's result.

Note: The TLS library used for the simulation was developed for pure ortho- D_2 at 5 K

4. Simulation results (3/7)

VCN production cross section approximation: $\sigma_{VCN} = \sigma_U$ V_{VCN} V_U

 $V_{UCN} = 5.3567$ m/s (150 neV); $\sigma_{UCN} = 0.75E$ -7 b. $[0, V_{VCN}]$ – the VCN production range.

4. Simulation results (4/7)

Materials Incident neutron energy Neutron velocity range

0,2045105

plotted by $AnGgl. 4.51$

4. Simulation results (5/7)

The VCN production cross section for solid deuterium and liquid deuterium

4. Simulation results (6/7)

The VCN production cross section for ice and parahydrogen

4. Simulation results (7/7)

The VCN production cross section for mesitylene

5. Conclusion

- Low-energy neutrons have been an extremely productive tool for researches in condensed matter physics, fundamental physics, chemistry, novel materials and life science
- Many projects and research on the development of low-energy neutron sources are being implemented actively in the world
- The production of UCN and VCN for some material was investigated using Monte Carlo code combined with available cross section data
- ◆ The existing libraries are insufficient to provide the necessary data for simulations involving the production and transport of UCN
- ◆ The need to extend the neutron energy range in the cross section libraries to the UCN energy range for further research regarding UCN
- \triangle The investigation contributes to selecting suitable materials for the development of intense low-energy neutron sources and optimizing source design

