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RED-100 detector

e two-phase emission detector designed to study coherent
elastic scattering of reactor electron antineutrinos

e contains ~200 kg of LXe (~ 100 kg in FV)

or ~100 kg of LAr (~50 kg in FV)

Pointlike events discrimination in the RED-100 experiment ll)"

using ML algorithms
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Background conditions

e RED-100 is working at shallow depth, unlike other similar
detectors (LUX, XenonlT).

— high radioactivity level
— significant background from spontaneous emission of SE
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response functions (LRFs))

DLNN (Deep learning neural network)

Based only on the light distribution
Preprocessing

— signal was normalized to make a sum of
1 across PMT matrix

— reconstructed radius<130 mm

Training dataset (0.7 of all data): — Learning rate

~/70k background events
~370k simulated CEVNS events

— Bayesian optimization from keras_tuner

Optimized hyperparameters:

— Number of hidden layers

— Number of neurons in each layers

— Dropout/batch-normalization/no additional
layers after each hidden layer

https://nest.physics.ucdavis.edu/

3DNN (Convolutional neural network)
Based on the light and time distribution

roc auc score: +use all available

Preprocessing

events were constructed

— Each pixel normalization as
(value - mean)/std, where mean a
calculated using all dataset

Result: 4 hidden layers (70, 62,72 and 44

neurons) with two batch-normalization layers
after the first and third hidden layers

~400k background events
~400k cevns events

— 10x10x20 pixels 3D “pseudo-images” of

Training dataset (0.75 of all data):

information about the event
-slow and requires a lot of
information
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NN comparison Applying to real data A lot of pointlike Summary

— general test dataset events in reactor OFF e Two NN approaches to pointlike event selection
(~600k events) was DLNN 3DNN background were tested and implemented

generated

— there is a correlation
between NN predictions on
validation dataset

— pointlike events
concentrate in one place

— some background events
with high probability to be
pointlike
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e NNs show good results at MC events, but reality is
more complicated

e DNN:

+fast learn and optimization

+less size of input data

e CNN:

+use all available information about the event
+maybe there are possibilities to improve

e 2D optimized cut is used in main branch of the
RED-100 analysis
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