Towards The Future of Generative
Models in Physics Research

Fares Ghazzawi, Fedor Ratnikov
LAMBDA, HSE University, Moscow, Russia

The 7t international conference on particle physics and astrophysics

NATIONAL RESEARCH

UNIVERSITY LAMBDA « HSE



Introduction & Problem Statement

* Simulation is one of the main components in high-energy physics
experiments.

* When making physics study, some simulation, typically Geant-4,
would be used to model particle passing through the detector
material.

* The most of computing resources in particle physics experiments are
spent on precision simulation of stochastic interaction of particles
with detectors of the experimental setup.

* There is a new need for faster, stable, and interpretable simulation to
maintain the balance between real data and simulated data events.



Proposed Solution

* The proposed solution would be Latent space

to utilize ML-Generative models
to create events which align to a
specific probability distribution.

* Generative Adversarial
Networks (GANs), consist of two
neural networks (NNs):

* Generator: generator to create
new data samples.

e Discriminator: evaluates the
generator output.
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GANs Pros and Cons

* Advantages:

Sampling is Fast. Flexibility. Smooth
distributions.

* Disadvantage:

Training requires control to ensure
precision. The need for dimensionality
reduction when simulating detectors.
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TPC FastSim (Fast4)

 TPCis the main tracking detector of the
central barrel of the MPD experiment.

* TPC has 95232 pads, responses from which
are collected in 310 time bucket.

e To reduce the dimensionality: the track is
divided into segments contributing to a
pad row.

* Fast4 model was introduced: a GAN model
which is trained on 4 input features (dip
angle, crossing angle, drift length, and pad
coordinate).
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Low and High-level validation (Fast4)

e Low level:

For each pad response image, 1st, 2nd
order moment and integrated
amplitude are calculated for generated
and original pad response images.

* High level:

Integrate the model into the software
stack of the detector simulation, and
compare the reconstruction qualities.

Sq. Time Width

Pad-Time Covariance

P [GeV/c]

(R S o . \ = D /’;r
iz e
e e L
LN = fenerated 1= = enerated e = fonerates
S~ / 005 .\_ - 7,/ o
P— a0 e e
/".7 \\ - /\\ . cm,
| ~ / ' T o,
Crossing angle [deg] Dip angle [deg] Drift length [time
bins]
W4T T T T T 1
E ¢ simulation n,, > 20
1.2 ¢ GAN .
— L= —
5 =
S. o.8F =
< -
8 >< i
=] 0.6 — —:
0.4F =
0.2 = . —
................... .
1 1 ]
8] 0.2 0.4 0.6 0.8 1 1.2 1.4

Diistance of closest approach resolution

along x



TPC fast-sim (Fast6)

* Fast6 is an upgrade for Fast4, which
utilizes transverse momentum and
pad row as additional input features
during training.

* A plot for the statistical distribution
of chi2/NDF for muItiFIe
reconstructed tracks for 3 different
approaches has been made.

e Results shows that utilizing
transverse momentum and pad row
enhances the results but still does
not fit the reference Geant
simulation.
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Software Integration (The Digital Twin).

* Machine learning models are widely used in various stages of the data
processing pipelines.

* Machine learning models are powerful, however directly depend on
the data they are trained on.

* For model integration into an already existing software stack, various
steps needs to be taking under consideration:

1. Model training.
2. Model storage and cataloging.
3. Model validation.




Digital Twin: Model Training
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Digital Twin: Model Storage
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Digital Twin: Model validation
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Conclusion

* Fast simulation approach of TPC detector can be achieved by utilizing
generative ML approach (GANSs).

* More complex Fast6 model outperform Fast4 model, but there is still
a window for improvements to fit the reference solution (Geant).

 Future work include:

* figure out specific requirements and/or extension to the training procedure
for the model to fit our physics driven requirements by using in-depth
analysis.

e implement the (semi) automatic system for training, bookkeeping and
encapsulation FastSim models.
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TPC fast-sim: Features description

 Fast 4 utilizes 4 input features which are:

e crossing angle — the angle between the transverse projection of the particle
momentum and the normal to the pad plane;

e dip angle — the angle between the full momentum and its transverse projection;

 drift length — distance from the center of the segment to the triggered pad row,
measured in the number of time buckets from the bunch crossing to the pad
response generation;

* pad coordinate — coordinate along the pad row direction of the projection of the
track segment center onto the triggered pad row, measured in pad widths.
 Fast 6 utilizes 2 additional input features which are:

* Transverse momentum: the component of momentum perpendicular to the beam
line.

 Pad row number.
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TPC fast-sim: Model architecture (Generator).
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TPC fast-sim:
Model
architecture
Discriminator).
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Training sets Saved models

Digital Twin:
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