

Simulation of the background from (α, n) reactions in the JUNO scintillator

Maxim Gromov (SINP MSU, JINR)

on behalf of the JUNO Collaboration

ICPPA-2024 conference

JUNO experiment: detector

Jiangmen Underground Neutrino Observatory

- <u>Type</u>: Reactor antineutrino detector
- <u>Baseline: 52.5 km</u> away from 8 nuclear reactors (26.6 GW_{th} total)

Location: South China, Guangdong, Jiangmen in a **700 m** deep underground laboratory

- 20 kt of Liquid Scintillator (LS)
- 17612 20" PMTs and 25600 3" PMTs
- PMT optical coverage 78%
- Energy resolution: σ < 3% at 1 MeV</p>
- Energy scale uncertainty: < 1%</p>
- Two subdetectors: TAO and OSIRIS
- Good radiopurity expected

JUNO will start data taking in 2025

JUNO experiment: physics

JUNO is

a **multi-purpose** neutrino experiment

Rich physical program including

- Neutrino mass ordering (NMO)
 with 3σ in ~6-7 years of data-taking
- Sub-percent measurements of the following oscillation parameters: $\sin^2 \theta_{12}, \Delta m_{21}^2, \Delta m_{31}^2$
- Geoneutrino measurement to more accurately determine fluxes and probe Earth's properties and evolution
- Solar neutrino flux measurements and an attempt to investigate the metallicity problem

Sources of α particles in JUNO

Expected concentration level *c* of natural radioactive impurities in the JUNO LS:

Source	²³⁸ U	²³² Th	²¹⁰ Pb	²¹⁰ Po (unsupported)
<i>c</i> [g/g]	10 ⁻¹⁵	10^{-15}	5×10^{-23}	3×10^{-24}

Note: the minimum radiopurity levels requested for the NMO measurement are considered

$^{13}C(\alpha, n)^{16}O$ reaction in liquid scintillator

Reactor antineutrinos are detected via Inverse Beta Decay (IBD) $\bar{\nu}_e + p \rightarrow e^+ + n$ $\overline{\nu}_e$ d delayed prompt

The reaction provides a **clear signal signature**, namely a **delayed coincidence**

- Prompt photons from e⁺ ionization and annihilation (1-8 MeV)
- Delayed photon from n capture on H (2.2 MeV)

${}^{13}C(\alpha, n){}^{16}O$ reaction in liquid scintillator

Simulation ¹³C(α , n)¹⁶O with SaG4n and JUNOSW

For further details about SaG4n see Nucl. Instrum. Methods Phys. Res. A 960 (2020) 163659 [arXiv:1906.03903]

25.10.2024

Transition from SaG4n α E_{dep} to JUNOSW α E_{gen}

Simulation pipeline

25.10.2024

Gromov M. (α, n) reactions in the JUNO scintillator

SaG4n output

²³²Th α source

Number of simulated full chain decays for each chain: 2×10^9

Chain or	Branching ratio [%]					
α source	n _o	n ₁	n ₂	n ₃	n ₄	
²³⁸ U	51.5	7.9	29.3	7.0	4.3	
²³² Th	43.9	8.5	34.2	8.1	5.3	
²¹⁰ Pb	89.3	9.3	1.4	0.0	0.0	

Chain or α source	Υ [n/α]	α/chain	Y [n/chain]
²³⁸ U	7.95×10^{-8}	8	6.36×10^{-7}
²³² Th	1.43×10^{-7}	6	8.58×10^{-7}
²¹⁰ Pb	5.11×10^{-8}	1	5.11×10^{-8}

IBD coincident event selection

10⁵ (α , n) events were generated uniformly inside the Central Detector volume using JUNOSW, for each of the α sources ²¹⁰Pb, ²³²Th, and ²³⁸U

A standard set of cuts was applied:

> prompt-delayed time difference: *dT* < 1 ms;</p>

> prompt-delayed vertex distance: dL < 1.5 m;</pre>

Fiducial volume of prompt vertex: R < 17.2 m;</p>

> prompt reconstructed energy: (0.7, 12) MeV;

> delayed reconstructed energy: (1.9, 2.5) MeV or (4.4, 5.5) MeV

Estimated ${}^{13}C(\alpha, n){}^{16}O$ event rates

For each individual source the rate of the α decay R_{decay} , assuming secular equilibrium in the decay chain, can be given by

$$R_{\text{decay}}\left[\frac{\text{cpd}}{\text{kt}}\right] = c \left[\frac{\text{g}}{\text{g}}\right] \times \frac{N_{\text{A}}}{\tau \text{ [day]} \times M} \times 10^9 \left[\frac{\text{g}}{\text{kt}}\right].$$

where **c** is the concentration of the mother of the decay chain, N_A is the Avogadro constant, **M** is the molar mass of the parent isotope of the chain, τ is its lifetime, and **cpd** stands for counts per day

The expected rate of (α, n) background events in 20 kt LS \mathbf{R}_{AC} or \mathbf{R}_{n} (w/ and w/o efficiency) can be calculated as follows

$$R_{AC} [cpd] = \varepsilon \times R_n [cpd] = R_{decay} \left[\frac{cpd}{kt} \right] \times Y_n \left[\frac{n}{chain} \right] \times M_{LS} [kt],$$

where ε is the IBD selection efficiency, Y_n is the neutron yield, and M_{LS} is the 20 kt mass of the LS

But for **unsupported** ²¹⁰Po in JUNO the respective rate in Borexino is **scaled**, assuming upon LS filling, that the ²¹⁰Po will be stripped from the surface into the LS volume <u>Note:</u>

A rate of 8×10^4 cpd/kt was reported in Borexino as the average value in the whole LS volume, at the beginning of data taking after filling (see *Phys. Rev. D* 101 (2020) 012009 [arXiv:1909.02257])

Estimated ${}^{13}C(\alpha, n){}^{16}O$ event rates

Source	Y _n [n/chain] neutron yield	c [g/g] expected concentration	R _{decay} [cpd/kt]	R _n [cpd] rate 20 kt LS	IBD selection efficiency	R _{AC} [cpd] IBD-like rate after cuts
²³⁸ U	6.36×10^{-7}	10^{-15}	1068	0.014	0.845	0.012
²³² Th	8.58×10^{-7}	10^{-15}	352	0.006	0.84	0.005
²¹⁰ Pb	5.11×10^{-8}	5×10^{-23}	12265	0.0125	0.88	0.011
²¹⁰ Po unsupported	5.11×10^{-8}	3×10^{-24}	70400	0.072	0.88	0.063

"cpd" stands for counts per day

13

0.091

total

¹³C(α, n)¹⁶O background reconstructed spectra

SaG4n v1.3 + Geant4.11.1.2, JUNOSW, 10⁵ events per source

Neutron yield uncertainty

Uncertainty source	Relative uncertainty		
SaG4n reference value discrepancy	18%		
${}^{13}C(\alpha, n){}^{16}O$ cross section	15%		
α maximum step length dependence (SaG4n's input parameter)	5%		
Detector response	5%		
Radioactivity concentration	5%		
Total (quadratic sum)	25%		

Conclusions

- Estimated the ¹³C(α , n)¹⁶O event rates and the respective spectra in JUNO liquid scintillator
- > Developed and set up a two-stage pipeline for evaluating the (α, n) background that includes among other things
 - a modern simulation tool SaG4n as a basis of the first stage;
 - a new Monte Carlo generator which uses the output of SaG4n and creates HepEvt files for the detector simulation;
 - a new approach to accounting for the α energy deposition before the (α , n) interaction
 - flexibility in case of re-evaluation of the background
- Considered additional contamination from non-equilibrium ²¹⁰Po
- > Analyzed different sources of uncertainties and demonstrated the level of expected accuracy at 25%

The results can be applied in further antineutrino studies in the JUNO experiment and they are useful for any general antineutrino detector with a liquid scintillator target

Thank you for your attention!