

^{7TH} INTERNATIONAL CONFERENCE ON PARTICLE PHYSICS AND ASTROPHYSICS (ICPPA-2024)

Time-over-Threshold Method for the BM@N Highly-Granular Neutron Detector

N.Karpushkin, F.Guber, D.Finogeev, S.Morozov, A.Makhnev, D.Serebryakov, A.Izvestnyy, D.Lyapin

The work has been supported by the Russian Scientific Foundation grant №22-12-00132.

25th of October 2024, Moscow

F. Guber, et al., Instrum. Exp. Tech. №3 (2024)

total length ~ 48cm (1.5 λ_{in})

Mechanical design

Light-tight and air-cooled assembly of 2 separate arms. Each arm:

- 1 veto-layer
- 7 Cu absorber layers (3 cm thick)
- 7 sensitive layers:
 - 11x11 matrix of scintillator detectors 4x4x2.5 cm³
 - surrounded from both sides by PCBs
 - upstream board: LEDs for time calibration
 - downstream board: SiPMs and FEE

Readout scheme

1.Plastic scintillator light flash

2.SiPM EQR15 11-6060D-S

3.High-speed comparator with differential LVDS output

4.FPGA-based TDC

= Response time + ToT

Per channel

- Dynamic range: 0.5-7 MIP
- Time resolution: 135 ps
- Amplitude resolution: < 20% (reconstructed from ToT)

F. Guber, et al., Instrum. Exp. Tech. 66 (2023) 4, 553-557.D. Finogeev, et al., Nucl. Instrum. Meth. A 1059 (2024) 168952.

SiPM: Beijing NDL EQR15 11-6060D-S

Active area 6×6 mm²
Pixel size15×15 μm²
Total pixels: 160 000
PDE: 45%
Gain: 4*10⁵

50

Analytical description of light signals captured by SiPM

 $Q_{total} = \frac{\theta}{R_s} \left(\frac{pT_p}{2(e-1)} + R_s C_T - \tau_D (1-p) \right) e^{\frac{ToT + t_1 - T_p}{R_s C_T}}$ O 200 Point 800₁ χ^2 / ndf 39.08 / 60 35 $0.05 \pm$ р 0 4.291± $\tau_{\rm D}$ 0 -30 R_sC_T 8.8 ± 600 0 25 500 20 400 15 300 10 200 100 5 range of interest

Purpose:

- Perform slewing correction based on physical principles By-product:
- Ideal: obtain τ_D , R_sC_T , p from tdc:tot slewing correction fit and reconstruct signal charge
- Reality: tdc:tot correlation shows low sensitivity to p and R_sC_T, therefore these parameters are fixed at their average values

٩0

15

20

25

30

35

55

ToT [ns]

60

50

N. Karpushkin, et al., Nucl. Instrum. Meth. A 1068 (2024) 169739.

45

40

Conclusions

- New Highly-Granular Neutron Detector is a perspective detector for the BM@N experiment aimed to explore the symmetry energy in the high baryon density region
- The electronics are tuned so as not to distort the smooth physical behavior of detector elements.
- Analytical description of signal shape is developed, allowing physically based description of tdc:ToT slewing correction and signal charge reconstruction
 - Average time resolution achieved: 135 ps
 - Average charge resolution achieved: <20%

Thank you for your attention!

BACKUP

EOS for high baryon density matter

The binding energy per nucleon: $E_A(\rho, \delta) = E_A(\rho, 0) + E_{sym}(\rho)\delta^2 + O(\delta^4)$ Isospin asymmetry: $\delta = (\rho_n - \rho_p)/\rho$ Symmetric matter Symmetry energy

Ch. Fuchs and H.H. Wolter, EPJA 30 (2006) 5

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080

EOS for high baryon density matter

The binding energy per nucleon: $E_A(
ho,\delta) = |E_A(
ho,0)| + |E_{sym}(
ho)|\delta^2 + O(\delta^4)$ Isospin asymmetry: $\delta = (
ho_n -
ho_p)/
ho$

Symmetric matter

Being extensively studied ۲ nowadays using observables (flow, meson yields, etc) to explore incomressibility

$$K_0 = 9\rho^2 \frac{d^2 E_A}{d\rho^2}$$

One of the main sources of uncertainty: discrepancy between experimental data

Symmetry energy

One of the main parameters to study is the E_{sym} slope

$$L = 3\rho \frac{dE_{sym}(\rho)}{d\rho}$$

- No experimental data for beam energies $E_{kin} > 0.4 \text{ GeV}$
- One needs to establish observables sensitive to *L* and obtain new experimental data

New data is needed to further constrain transport models with hadronic d.o.f.

Symmetry energy in high-density region

X.X. Long, G.F. Wei, Phys.Rev.C 109 (2024) 5, 054619

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080

- Nuclotron-NICA density region: $2 < n_B/n_0 < 8$
- Symmetry energy E_{sym} has strong density dependence and can be described with its slope

What observables can we use to extract information about *L*?

Observables to study symmetry energy

Rapidity and kinetic energy distributions of n/p ratios show strong dependence on L and weak dependence on K_{θ}

Neutron measurements are required to extract robust information about symmetry energy

Collective flow as sensitive probe to the EOS

Incompressibility parameter $K_0(\rho)$:

Specifies the behavior of EOS in the given baryon densities

Models with flexible EOS for different (K_0, ρ) are required

$$\frac{dN}{d\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos\left[n(\varphi - \Psi_{RP})\right], v_n = \left\langle \cos\left[n(\varphi - \Psi_{RP})\right]\right\rangle$$

Collective flow is sensitive to:

- Compressibility of the created in the collision matter
- Time of the interaction between the matter within the overlap region and spectators

How to measure the collective flow?

The HGND for the BM@N Experiment

One can define free neutron-proton differential directed flow:

$$v_1^{np} = \frac{N_n(y)}{N(y)} \langle v_1^n(y) \rangle - \frac{N_p(y)}{N(y)} \langle v_1^p(y) \rangle$$

 $N_n(y), N_p(y), N(y)$ - total number of neutrons, protons and nucleons respectively

 $\langle v_1^n(y) \rangle$, $\langle v_1^p(y) \rangle$ - flow of neutrons and protons respectively

- v_1^{np} sensitive to both K_0 and L which may lead to ambigous interpretation
 - More observables might be necessary for robust study of L

FIG. 18. Constraints deduced for the density dependence of the symmetry energy from the present data in comparison with the FOPI-LAND result of Ref. [5] as a function of the reduced density ρ/ρ_0 . The low-density results of Refs. [78–81] as reported in Ref. [82] are given by the symbols, the gray area (HIC), and the dashed contour (IAS). For clarity, the FOPI-LAND and ASY-EOS results are not displayed in the interval $0.3 < \rho/\rho_0 < 1.0$.

Proton p_T**-y acceptance**

TOF-400

Alalytical description of light signals captured by SiPM: main behavior

(2)

$$N_{ph}^{scint}(t) \approx N_{ph}^0 e^{-t/\tau_D}$$

 N_{ph}^0 – normalization factor, τ_D – light decay constant.

Solution 1 – Process as convolution of photoelectron current $I_{discharge}$ with SiPM impulse response function g(t)

$$I_{discharge} = -q\eta G \frac{dN_{ph}^{scint}}{dt} \qquad g(t) = \frac{1}{R_s C_T} e^{-t/R_s C_T}$$

 η – PDE, q – electron charge, G – SiPM gain, R_s – load resistance + low intrinsic SiPM resistance, C_T – total SiPM capacitance.

$$V(t) = R_s(I_{discharge} * g)(t) = \frac{\eta q G N_{ph}^0}{C_T \tau_D} \int_0^t e^{-\frac{x}{\tau_D}} e^{-\frac{t-x}{R_s C_T}} dx = \frac{\eta q G N_{ph}^0 R_s}{R_s C_T - \tau_D} \left(e^{-t/R_s C_T} - e^{-t/\tau_D} \right).$$
(1)

Solution 2 – Proccess as differential equation

$$\frac{dQ}{dt} = I_{recharge} - I_{discharge} \qquad V_{bias} - R_s I_{recharge} = \frac{Q}{C_T}.$$
$$V(t) = R_s I_{recharge} = \frac{\eta q G N_{ph}^0 R_s}{R_s C_T - \tau_D} \left(e^{-t/R_s C_T} - e^{-t/\tau_D} \right).$$

Construction status

Structure of active layer

active layer PCB positioning

LPI test March 2024 averaged results	
Measurement	Average over 20mm circle
Light Yield	94 or 122 p.e.
Time resolution	156 ps = $\frac{\int (135+1.6*r)*2pi rdr}{pi r^2}$
Charge resolution	<20 %

The HGND mock-up assembled at INR

- Scintillator Cells: All ~2,000 cells (40x40x25 mm³) have been built.
- **PCB**: Design is finalized and production is underway.
- **Readout board**: The FPGA-based TDC readout board is under active development.
- **Prototype:** First mock-up prototype with scintillator layer assembled; beam test preparations completed.
- Timeframe: To be commissioned by the end of 2025.