

DEVELOPMENT AND IMPLEMENTATION OF TECHNOLOGIES FOR A NEW ULTRACOLD NEUTRON SOURCES BASED ON SUPERFLUID HELIUM

Group leader: Serebrov Anatolii Pavlovich **Responsible for facility:** Lyamkin Vitaliy Alexandrovich

UCNS team:

Fomin A.K., Prudnikov D.V., Koptyukhov A.O., Borodinov G.O., Nedolyak A.A., Hazov P.A., Sirotin A.V., Ivanov S.N., Kolomenskiy E.A., Krasnoshekova I.A, Leonova E.N., Fedorova O.P., Krivshich A.G.

The 7th international conference on particle physics and astrophysics

ULTRACOLD NEUTRONS

MOTIVATION

- Over the past 20 years, there has been no progress in increasing the density of ultracold neutrons
- Highly efficient cryogenic methods by using LD2 or sD2 have been mastered
- For further progress, it is proposed to use superfluid helium to obtain UCN
- Progress in the development of UCN sources is holding back progress in researches

UCN PRODUCTION

MCNP CALCULATIONS OF THE UCN SOURCE FOR PIK

TECHNOLOGIES FOR A NEW ULTRACOLD NEUTRON SOURCES BASED ON SUPERFLUID HELIUM

$$\tau^{-1}_{\text{UCN}} = \tau^{-1}_{\beta} + \tau^{-1}_{\text{upscattering}} + \tau^{-1}_{\text{wall losses}} + \tau^{-1}_{\text{capture}}$$

- 1. Production and maintenance of superfluid helium at 1 K under reactor heat inflows
- 2. Design of the UCN source and the technological complex for maintaining its operating parameters
- **3.** Calculation and design of heat exchangers for ultra-low temperatures
- 4. Manufacturing of UCN neutron guides with high neutron reflection boundary velocity (coated by ⁵⁸Ni)
- 5. Isotopically pure helium to eliminate the neutron-absorbing isotope ³He

FULLSCALE UCNS MODEL

CREATION OF FULLSCALE UCNS MODEL

HEAT LOAD TESTS

- The possibility of maintaining helium in the superfluid state under thermal loads up to 60 W was experimentally checked
- The possibility of installing a UCN source on the fission reactor was experimentally substantiated

LOW TEMPERATURE PART

HELIUM COOLING SYSTEM

- Heat load at He4@1K: **7** W
- Required helium pumping performance
 - To compensate for heat load: 0,35 g/s
 - To lower helium temperature down to 1K: 0,17 g/s
 - $P_{He4} = 40 Pa$
 - He4 mass flow: **0,52 g/s (15 l/h liquid)**
 - HEX area: 2200 cm²

HEAT REMOVAL FROM HELIUM CONVERTER

 T_{UCNS} – UCNS convernet temperature, K; T_{He4} – He4 temperature at the HEX, K; ΔT_{He4-Fe} , $\Delta T_{Ni-HeII}$ – Kapitza Conductance at He-steel and He-Ni, K; ΔT_{λ} – temperature gradient due to thermal resistance of the HEX wall, K; ΔT_{κ} – temperature gradient due to heat transfer in He-II, K.

KAPITZA CONDUCTANCE MEASURMENT EXPERIMENT

KAPITZA CONDUCTANCE MEASURMENT RESULTS

Can be lowered to 1.2 by using Cu HEX

NEUTRON GUIDES MANUFACTURING

Pipe final polishing machine

- 1. Pipe purchasing
- 2. Obtaining the required (round) geometry
- 3. Grinding to Ra = 1.6
- 4. Polishing to Ra = 0.1
- 5. Final polishing to Ra = 0.025

Initial / final state of the neutron guide surface

NEUTRON GUIDES COATING

UCN neutron guide coating by ⁵⁸Ni by using sputter deposition

NEUTRON GUIDES MANUFACTURING

Nickel magnetron and ion source for surface pre-cleaning

⁵⁸Ni coated glass pipe compared to a uncoated pipe

Thickness of coated ⁵⁸Ni is 3000 Å

ISOPURE HELIUM PRODUCTION

ISOPURE HELIUM PRODUCTION

ISOPURE HELIUM PRODUCTION

With a filter diameter of 8 mm, the critical flow of superfluid helium through the filter was 1 g/cm²s.

- As a result of 6 launches, 43 m³ of isotopically pure helium-4 was produced
- Analysis of isotope-pure helium on a HELIX SFT Static Vacuum Mass Spectrometer at the Ilyichev Pacific Oceanological Institute assessed the presence of ³He in purified helium at a level below 10⁻¹¹

UCN SOURCE LAYOUT

SCIENTIFIC RESEARCH PROGRAM WITH UCN AT THE PIK REACTOR

CRYOGENIC TEST OF UCN SOURCE

THANK YOU FOR YOUR ATTENTION FROM WHOLE UCNS TEAM

