Design and performance of the gaseous beam monitor for the CSR external-target experiment

<u>Hulin Wang</u>¹, Chaosong Gao¹, Jun Liu¹, Zhen Wang², Xianglun Wei³ On behalf of the CEE Beam Monitor Group

- 1. Central China Normal University
 - 2. Guizhou Normal University
- 3. Institute of Modern Physics, Chinese Academy of Sciences

The 7th international conference on particle physics and astrophysics

MEPhI, Moscow Oct 22-25, 2024

Outline

- Introduction
- Beam Monitor of CEE
 - Detector system
 - Topmetal-CEE pixel charge sensor
 - Electronics
- Performance of the Prototype
 - Heavy-ion beam test
 - Laser test
- Summary and Outlook

CEE at HIFRL-CSR

Heavy Ion Research Facility in Lanzhou Cooler-Storage-Ring system

CSR External-target Experiment

- Study the properties of nuclear matter at high baryonic density
- Fixed target, with heavy-ion (up to U) beam energy: $\sim 0.4 1.1 \text{ GeV/u}$
- Maximum event rate: 10⁴ s⁻¹
- Start operation in 2025

Beam Monitor of CEE

- Placed upstream of the fixed target in a magnetic shield
- Measure the position of each beam particle
- Offline: vertex reconstruction (combined with TPC and MWDC)
- Online: monitor the beam status
- Main design parameters:
 - Position resolution : $50 \ \mu m$
 - Minimum time separation of two particles: $1 \mu s$
 - Sensitive area: $30 \times 30 \text{ mm}^2$

- Two field cages in a gas vessel
- Custom-designed Topmetal-CEE chip as anode for charge sensing and readout
- Amplification with GEM

Detector system

Field cage v1 : 25 μm Kapton+5 μm Au

Field cage v2 : 2 µm Mylar+100 nm Al

Topmetal-CEEv1 chip

The main features of the Topmetal-CEEv1 chip.	
Feature size	130 nm
Chip area	4.2 mm ×19 mm
Number of pixels	1×180
Pixel pitch	100 µm
CCE size	1 mm ×89 μm
Shaping time (tunable)	$\sim 0.5~\mu s$ to 2 ms
Peaking time	$\sim 100 \text{ ns}$
Readout scheme	Data-driven readout
Readout time	25 ns/pixel
Amplitude measurement	TOT method

19038 µm

Topmetal-CEEv1 chip

Topmetal-CEEv2 chip

- Almost same geometry
- Main improvement:
 - Minimum threshold: $\sim 20 \text{ ke}^- \Rightarrow \sim 5 \text{ ke}^-$
 - Minimum shaping time: $\sim 1 \ \mu s => \sim 0.5 \ \mu s$

Electronics

Front-end electronics

Readout and control unit

Heavy-ion beam test

- Kr at \sim 320 MeV/u
- Rate: $\sim 10^4 10^6 \text{ s}^{-1}$

Center of geometry Resolution: 47.80 µm

Center of gravity Resolution: 41.85 µm

Laser test

• 266 nm pulsed laser

Amplitude [700 e⁻]

Events normalized to unit 0.14 E_{drift} = 300 V/cm = 2.5 cm 0.12 L_{drift} = 3.3 cm L_{drift} = 4.3 cm 0.1 0.08 0.06 0.04 0.02 0 120 140 160 180 200 220 240 260 280 300 Drift time + Laser delay [25 ns] Drift time + Laser delay [µs] E_{drift} = 300 V/cm $V_{Drift} = 0.728 \pm 0.003 \text{ cm/}\mu\text{s}$ 2 2.5 0 0.5 1 1.5 3 3.5 4 4.5 5 Drift distance [cm] 14 Std. Dev. of Drift time [ns] E_{drift} = 300 V/cm 13 12 11 10 9 Resolution: 9-13 ns 7<u>1.</u> 1.5 2 2.5 3 3.5 4 4.5

11

Drift distance [cm]

Time [25 ns]

Summary and Outlook

- Gaseous beam monitor, part of the CEE experiment, is under development.
- It features Topmetal-CEE chips for charge sensing and readout in the gas, with GEM for amplification.
- Complete detector system, including the gas detector, front-end electronics, and readout and control electronics, have been developed.
- Preliminary results from heavy-ion beam and laser tests showed a spatial resolution better than 50 μ m and a time resolution better than 15 ns.