

The GNA software for performing neutrino oscillation analysis

Anna Stepanova, Liudmila Kolupaeva, Maxim Gonchar

Joint Institute for Nuclear Research, Dubna, Russia

Contact email: as592454@gmail.com

Global Neutrino Analysis (GNA)

- ► A software for carrying out a data analysis of neutrino events. It includes:
 - ▷ transformation-functions for calculations based on C++, ROOT CERN and Python;
 - ▷ blocks composed in a graph;
 - ▷ functions for a statistical data analysis.
- ► GNA is developed in the Dzhelepov Laboratory of Nuclear Problems (JINR).

A unified shell for modeling long-baseline experiments in GNA

MODES : fhc_app_nue: Signal: nue FhcRhc: fhc AppDis: app CH: bkg beam: channel_type: beam initial flavor: nue final_flavor: nue xsec_type: CC

Global GNA Neutrino Analysis

► The configuration file includes:

 \triangleright modes with channels;

 \triangleright oscillation parameters;

▷ an energy scale;

▷ paths for flux, xsec, efficiencies files;

 $E_{\rm recon}$ or Gaussian energy resolution;

 \triangleright the difference between E_{true} and

Neutrino oscillations in matter

- ► Neutrino mixing: $u_{\alpha} = \sum \mathrm{U}_{\alpha,\mathrm{i}}^* \cdot \nu_i, \quad \alpha = e, \ \mu, \ \tau$, ν_{α} – flavour eigenstates, ν_i – mass eigenstates.
- ▶ Pontecorvo-Maki-Nakagawa-Sakata matrix U is a lepton mixing matrix: $U \sim \theta_{12}, \ \theta_{13}, \ \theta_{23}, \ \delta_{CP}.$
- ► The oscillation probability depends on: \triangleright parameters of U matrix;
 - ▷ mass squared differences: Δm_{21}^2 , Δm_{32}^2 ;
 - \triangleright the neutrino mass ordering: sign Δm_{32}^2 ;
 - \triangleright the matter density ρ ;
 - \triangleright a ratio of a baseline and neutrino energy $\frac{L}{F}$.
- ► There are unknown parameters: the sign of Δm_{32}^2 , the octant of θ_{23} , and $\delta_{\rm CP}$.

Sensitivities to the unknown oscillation parameters

- ► There are 2 operating long-baseline neutrino oscillation experiments: NOvA (NuMI Off-axis ν_e Appearance) and T2K (Tokai to Kamioka).
- ▷ parameters of an experiment.
- ► The configuration file is an input of the unified shell, then it is possible to calculate:
 - \triangleright *N* event rates in *i* energy bins for *j* channels of *m* modes:

$$egin{aligned} &N_{j}^{m} = \sum_{i=0}^{ extsf{D}} N_{j,m}^{i}, \ N_{j}^{i} = extsf{K} \cdot f(E_{ extsf{true}})_{j} \cdot P(E_{ extsf{true}})(
u_{lpha}
ightarrow
u_{eta})_{j} \ \cdot \sigma(E_{ extsf{true}})_{j} \cdot \sum_{k=0}^{n} R(E_{ extsf{true}}, E_{ extsf{rec.}})_{jk} \cdot arepsilon(E_{ extsf{rec.}})_{k} \cdot \Delta E_{ extsf{rec.}}, j \end{aligned}$$

 $\triangleright \chi^2$ values with nuisance terms using calculated event rates and data;

$$\chi^{2} = -2 \sum_{m=0}^{M} \sum_{j=0}^{B} \left(N_{j,m}^{\text{data}} \ln N_{j,m}^{\text{mod.}} - N_{j,m}^{\text{mod.}} - N_{j,m}^{\text{data}} \ln N_{j,m}^{\text{data}} + N_{j,m}^{\text{data}} \right) + \frac{(x-\mu)^{2}}{\sigma^{2}}$$

Finally, the whole point of these calculations is to estimate individual and joint sensitivities of experiments to oscillation parameters.

A model graph fragment in the GNA

- Creating a graph allows us to control the correctness of
- ► It is unnecessary to recalculate the full model during the fit \rightarrow the lazy

- ▶ 2 dimensional contours with Asimov dataset (MC) within GNA:
 - > assuming the normal neutrino mass ordering;
 - ▷ 12 modes in NOvA:

- 4 $\nu_e/\overline{\nu}_e$ appearance (high, low PID), 8 $\nu_\mu/\overline{\nu}_\mu$ disappearance (quartiles) with the different hadron energy fraction):

▷ 5 modes in T2K:

- 2 $u_e/\overline{\nu}_e$ + 1 u_e CC1 π appearance, 2 $u_\mu/\overline{\nu}_\mu$ disappearance in both regimes (forward horn current, reverse horn current):

• – expected MC best fit points, • – calculated best fit points (after analysis).

The future global fit

► There is an opportunity to add some blocks during the fit \rightarrow the extensibility.

makes a process of simulation faster and more efficient.

References

- GNA page: http://gna.pages.jinr.ru/gna/
- ► Git repository: https://git.jinr.ru/gna/gna

The work is supported by the Russian Science Foundation under grant agreement no. 24-72-00048.

▶ previous and current oscillation experiments:

Туре	Experiments	Parameters	Energy
Solar + KamLAND	Homestake, GALLEX/GNO, SAGE, Borexino, SNO, SuperK + KamLAND	$\Delta m_{21}^2, \ heta_{21}$	0.1 — 20 MeV
SBL reactor	RENO, Double Chooz, Daya Bay	$\Delta m^2_{31}(\Delta m^2_{ee}), \ heta_{31}$	1 — 8 MeV
Accelerator	MINOS, K2K, T2K, NOvA	$\Delta m_{32}^2, \ heta_{23}, \ \delta_{CP}$	1 — 10 GeV
Atmosphere	IceCube DeepCore, SuperK	$\Delta m_{31}^2, \ heta_{23}$	0.1 — 100 GeV

▶ future neutrino oscillation experiments: JUNO, DUNE, T2HK, KM3NeT ORCA, ESS ν SB and others.

The **goal** is to combine experiments and estimate their global sensitivities to unknown oscillation parameters within the GNA software.

The 7th International Conference on Particle Physics and Astrophysics (ICPPA-2024)