
NOvA recent results of three-flavor oscillation analysis

Anastasiia Kalitkina (for the NOvA Collaboration) Joint Institute for Nuclear Research

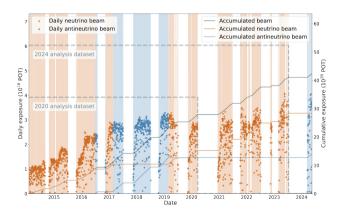
ICPPA-2024

NuMI Off-axis ν_e Appearance Experiment (NOvA)

- NOvA is a long-baseline off-axis neutrino oscillation experiment at US.
- Neutrino source is Fermilab's Megawatt-capable NuMI beam.
- Two functionally identical, finely granulated detectors, filled with liquid scintillator.

New data and beam power

New results comprise 10 Years of NOvA data (2014-2023)

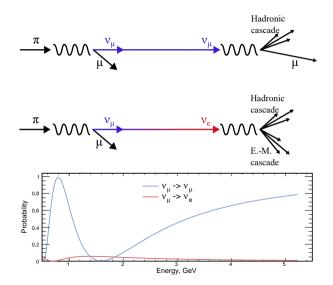

- Typical beam power of \sim 900 kW, record of 1018 kW in June 2024.
- Beam purity:
 FHC: 95% ν_μ, 4% ν

 ^μ, 1% ν_e/ν

 ^e
 RHC: 93% ν

 ^μ, 6% ν_μ, 1% ν_e/ν

 ^e
- 26.61×10^{20} POT neutrino mode (doubled from 2020 analysis).
- 12.50×10^{20} POT antineutrino mode.

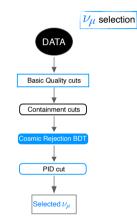

3 Flavor Physics at NOvA

Primary goals:

- $u_{\mu}(ar{
 u}_{\mu})$ disappearance:
 - measurement of Δm_{32}^2
 - mixing angle θ_{23}

 $u_e(ar
u_e)$ appearance:

- neutrino mass ordering
- CP violating phase
- θ_{23} octant
- mixing angle θ_{13}

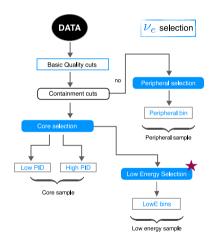


Event selection

The full Far Detector selection includes a set of selection cuts: quality, containment, cosmic rejection, and the event-classifier.

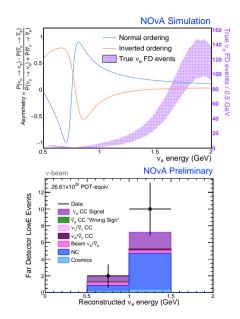
Enhancing sensitivity by samples splitting u_{μ} selection:

- the sensitivity depends primarily on the shape of the energy spectrum
- dataset is divided into 4 quartiles by hadronic energy fraction

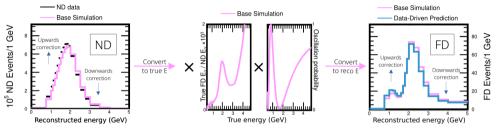


Event selection

The full Far Detector selection includes a set of selection cuts: quality, containment, cosmic rejection, and the event-classifier.

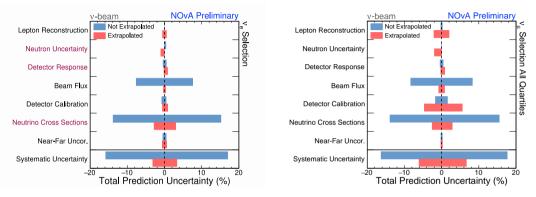

Enhancing sensitivity by samples splitting ν_e selection:

- the sensitivity depends primarily on separating signal from background
- A new selection was developed to retain lower energy ν_e candidates.

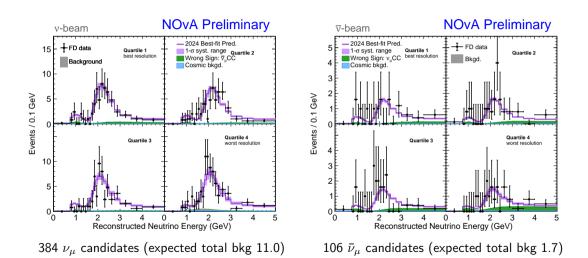


New Low Energy ν_e sample

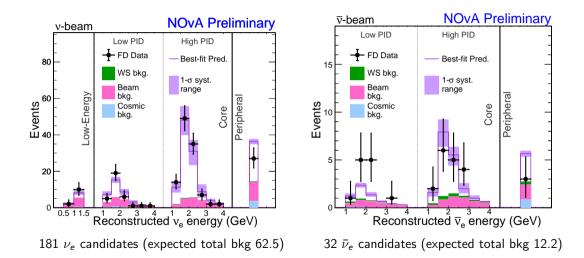
- Previous analysis had a cut $E_{reco}(
 u) \geq 1 \; {
 m GeV}$
- Maximum ordering sensitivity from asymmetry at lower E_{ν}
- Improves sensitivity to mass orderings by few percent (depending on the oscillation parameters)
- No low energy events for the antineutrino beam mode


Extrapolation

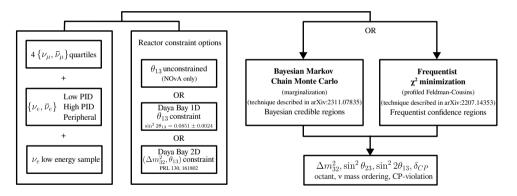
The Near Detector (ND) Data/MC ratios are used to correct the Far Detector (FD) predictions.


- ND ν_{μ} -like samples are used to correct the FD $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\nu_{\mu} \rightarrow \nu_{e}$ signal predictions.
- ND ν_e -like samples are used to correct the FD ν_e background predictions.
- Far-to-near transformation accounts for well understood effects like beam divergence, and detector acceptance differences.
- The resulting constrained FD predictions are highly correlated with the ND corrections.

Systematic uncertainties


- 2024 improvements: new pion-production systematic uncertainties, improved light response model and neutron propagation uncertainty.
- ND constraints reduce the systematic uncertainties in the FD predictions from 18% to 4%. Statistical uncertainties are dominant in the oscillation measurement.

u_{μ} far detector observations


Anastasiia Kalitkina, JINR

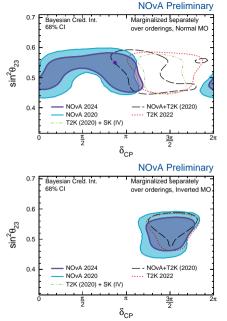
ν_e far detector observations

Far detector fitting procedure

- a simultaneous fit of all samples is performed, using Bayesian or Frequentist techniques
- external constraints are used for the solar parameters and optionally reactor constraint on θ_{13}

Other mixing parameters: $\sin^2 \theta_{12} = 0.307$ (PDG 2023), $\Delta m_{21}^2 = 7.53 \times 10^{-5}$ eV² (PDG 2023), $\rho = 2.74$ g/cm² (CRUST 1.0)

Moscow, ICPPA-2024

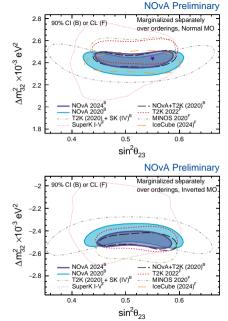

Oscillation parameter results

Frequentist results

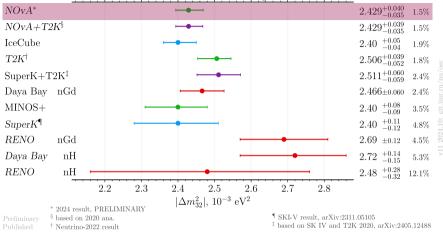
(with Daya Bay 1D θ_{13} constraint)

Parameter	Normal MO	Inverted MO
$\Delta m^2_{32}/10^{-3}{ m eV}^2$	$+2.433^{+0.035}_{-0.036}$	$-2.473^{+0.035}_{-0.035}$
$\sin^2 \theta_{23}$	$0.546\substack{+0.032\\-0.075}$	$0.539\substack{+0.028\\-0.075}$
δ_{CP}	$0.88~\pi$	$1.51~\pi$
Rejection		1.36
significance (σ)		

- The new NOvA result is consistent with previous one.
- The data disfavor asymmetry combinations NO: $\delta = 3\pi/2$, and IO: $\delta = \pi/2$.


Oscillation parameter results

Frequentist results


(with Daya Bay 1D θ_{13} constraint)

Parameter	Normal MO	Inverted MO
$\Delta m^2_{32}/10^{-3}{ m eV}^2$	$+2.433^{+0.035}_{-0.036}$	$-2.473^{+0.035}_{-0.035}$
$\sin^2 \theta_{23}$	$0.546\substack{+0.032\\-0.075}$	$0.539\substack{+0.028\\-0.075}$
δ_{CP}	$0.88~\pi$	$1.51~\pi$
Rejection		1.36
significance (σ)		

- The new NOvA result is consistent with previous one.
- In the ν₂ ν₃ sector, NOvA's measurements are consistent with accelerator, atmospheric, and joint results.

Normal mass ordering

 Δm^2_{32} is now the most precisely know PMNS parameter. NOvA's new result gives the most precise single experiment measurement (1.5% unc.).

Moscow, ICPPA-2024

Conclusion

- The NOvA 2024 analysis includes:
 - 10 years of data collection
 - a doubled neutrino mode exposure compared to 2020 analysis
 - updated simulation and event selection
- Results are consistent with previous analysis.
- Both Frequentist and Bayesian techniques yield similar results on our data.
- Most precise single-experiment measurement of Δm^2_{32} (1.5% uncertainty).
- Slight preference for normal mass ordering (6.8 Bayes Factor, 1.6 σ), Upper Octant θ_{23} , CP-conserving δ_{CP} values.
- Data disfavor regions with large $\nu_e/\bar{\nu}_e$ asymmetry.

The NOvA future goal is doubling of antineutrino data before 2027. crucial to clarify Neutrino Mass Ordering and CP-violation