Search for heavy neutrinos using T2K near detector ND280

Konstantin Gorshanov¹

Co-author: Alexander Izmaylov¹

¹Institute for Nuclear Research of the Russian Academy of Sciences

7th International Conference on Particle Physics and Astrophysics (ICPPA-2024)

Moscow, October 23rd, 2024

Physics motivation

New physics beyond SM:

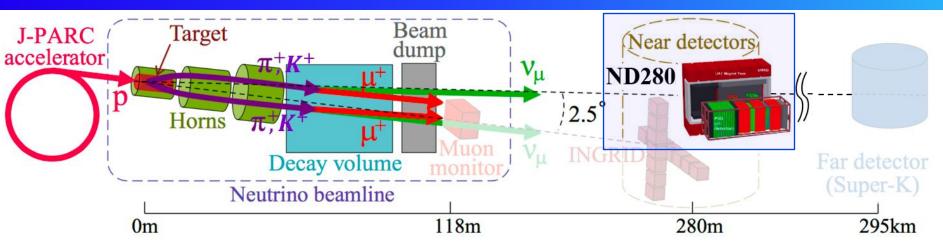
- $m_{\nu} \neq 0$
- Baryon asymmetry of the Universe
- Dark Matter

vMSM-model [1,2]:

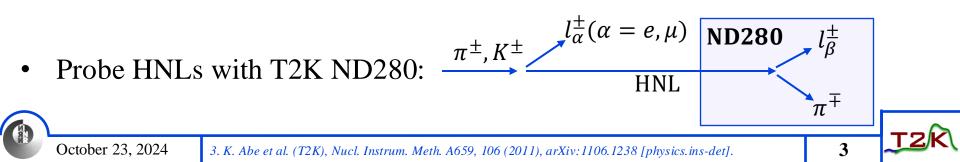
- 3 right-handed neutrinos N_I , $I = \{1,2,3\}$
- $\nu \& N_I$ Majorana particles
- $m_{N_1} \sim keV$ could be dark matter
- $m_{N_{2,3}} \sim MeV GeV$ could generate baryogenesis

2

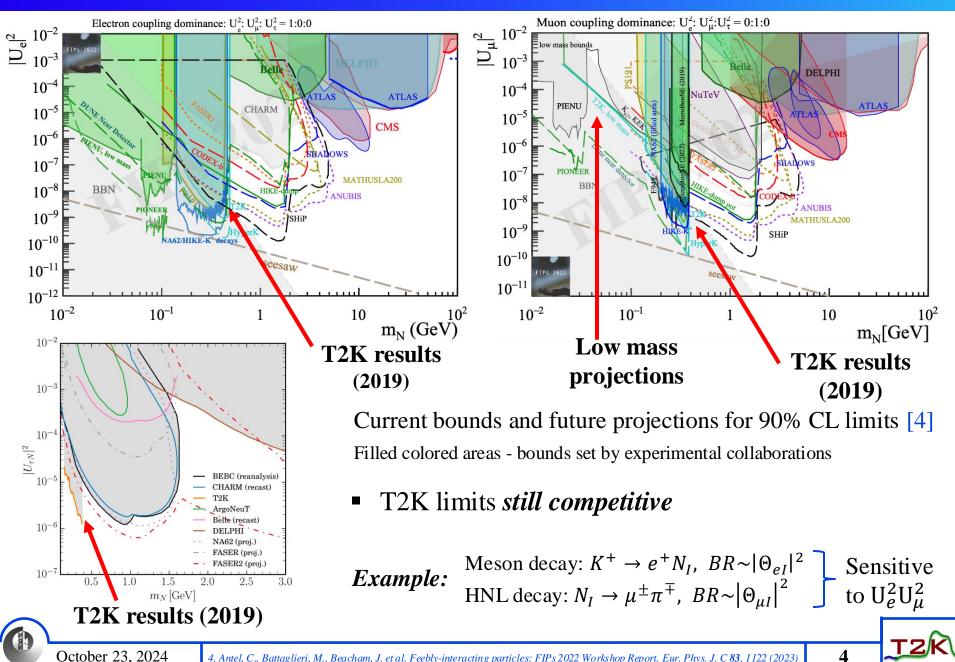
Left-handed flavor eigenstates as combination of light (v_i) and heavy (N_I) mass eigenstates:


 $v_{\alpha} = \sum_{i=1}^{3} V_{\alpha i}^{PMNS} v_{i} + \sum_{I=1}^{n} \Theta_{\alpha I} N_{I} \ (\alpha = e, \mu, \tau; \ i = 1, 2, 3; \ I = 1, 2, 3)$

Assuming
$$M_2 \sim M_3 \equiv M_N$$
, $|U_{\alpha}|^2 = \sum_{I=\{2,3\}} |\Theta_{\alpha I}|^2$
HNL search methods:
Study meson decay
 $(H^{\pm} \rightarrow l_{\alpha}^{\pm}N)$ kinematics
Used in E949, NA62, etc.
Sensitive to U_{α}^2
Sensitive to U_{α}^2
Meavy Neutral Leptons
(HNLs) or heavy neutrinos
Feynman representation of
HNL contributions
CERN-PS-191; can probe in
neutrino experiments
Sensitive to $U_{\alpha}^2 U_{\beta}^2$


October 23, 2024

1. T. Asaka, M. Shaposhnikov. "The nuMSM, dark matter and baryon asymmetry of the universe". In: Phys. Lett. B620 (2005), pp. 17–26 2. T. Asaka, S. Blanchet, M. Shaposhnikov. "The nuMSM, dark matter and neutrino masses". In: Phys. Lett. B631 (2005), pp. 151–156.


T2K experiment

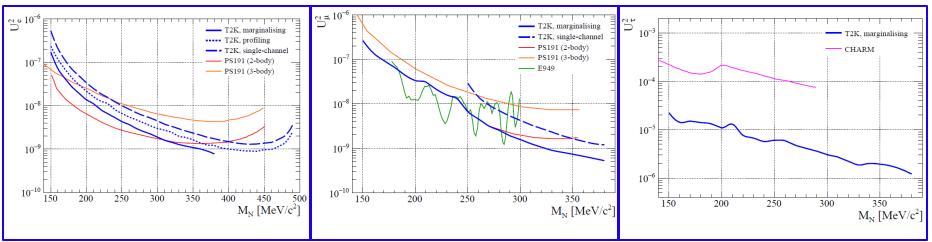
- Tokai-to-Kamioka (T2K) [3] long-baseline neutrino experiment in Japan Main goal study ν oscillations, search for lepton CP violation.
- Accelerator experiment based on 30 GeV proton beam @ J-PARC
- Neutrino beam from π and K mesons decays
- π and *K* mesons focused with magnetic horns for $\nu_{\mu}(\overline{\nu_{\mu}})$ enhanced beam.

Current constraints on mixing elements

October 23, 2024

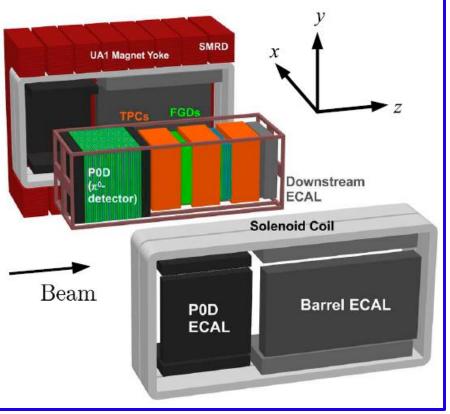
4. Antel, C., Battaglieri, M., Beacham, J. et al. Feebly-interacting particles: FIPs 2022 Workshop Report. Eur. Phys. J. C 83, 1122 (2023)

Motivation for new analysis

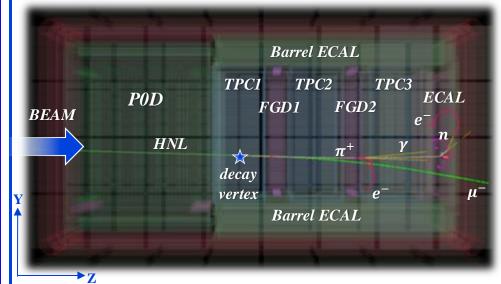

Search for HNL *in 2019* [5]:

- $K^{\pm} \rightarrow l_{\alpha}^{\pm} N \ (\alpha = e, \mu)$
- K^+ in ν -mode and K^- in $\overline{\nu}$ -mode

New search for HNL:


- $H^{\pm} \rightarrow l_{\alpha}^{\pm} N \ (H = K, \pi; \alpha = e, \mu)$
- $H^{\pm}(H = K, \pi)$ in ν and $\overline{\nu}$ beam modes
- *Updated* tracking, signal and background
- Additional statistics available

T2K results obtained in 2019 [5]



90% upper limits on $|U_{\alpha}|$ as function of M_{HNL}

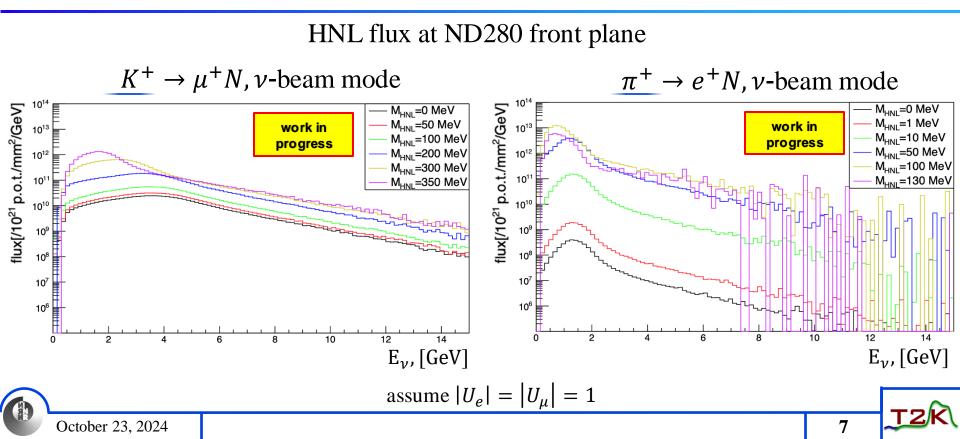
ND280 and HNL typical event

- UA1 magnet dipole magnetic field 0.2 T
- $POD \pi^0$ detector
- ECAL Electromagnetic Calorimeter

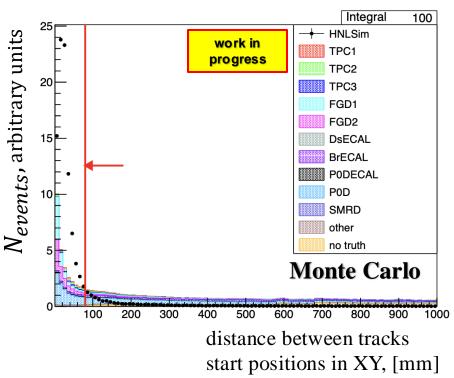
Example of simulated HNL decay in ND280

- **TPCs Gaseous-Argon Time Projection Chambers**
- FGDs Fine Grained plastic-scintillator Detectors
- SMRD Side Muon Range Detector,

scintillator plates inside magnet yokes

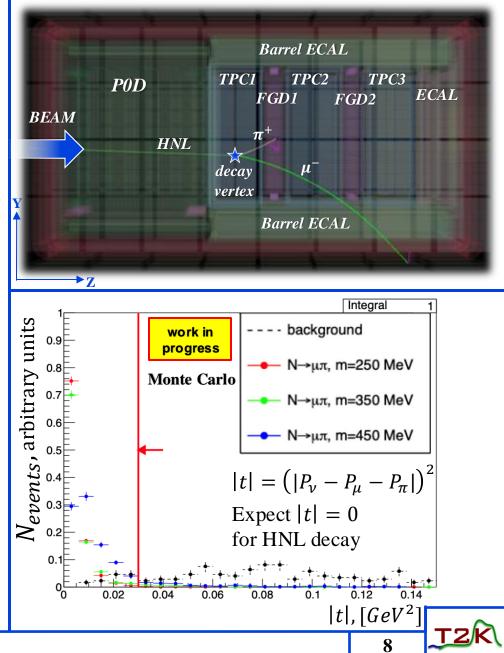

TPC Fiducial Volume: no walls, no cathode Margin of 59 mm upstream and 150 mm downstream

October 23, 2024



HNL search in ND280

- *Events in TPC gas* to reduce background from ν interactions
- Study decays: $H^{\pm} \rightarrow l_{\alpha}^{\pm} N \quad (H = K, \pi; \ \alpha = e, \mu)$ $N \rightarrow \mu^{\pm} \pi^{\mp}, N \rightarrow e^{\pm} \pi^{\mp}, N \rightarrow e^{+} e^{-} \nu, N \rightarrow \mu^{+} \mu^{-} \nu, N \rightarrow e^{\pm} \mu^{\mp} \nu$
- Signal topology: 2 close opposite charged tracks starting in same TPC fiducial volume
- Applying veto, PID and kinematic selection criteria


Selection criteria examples

- Starting positions < 80 mm in XY plane
- Reconstructed vertex in TPC Fiducial Volume

Monte Carlo simulation:

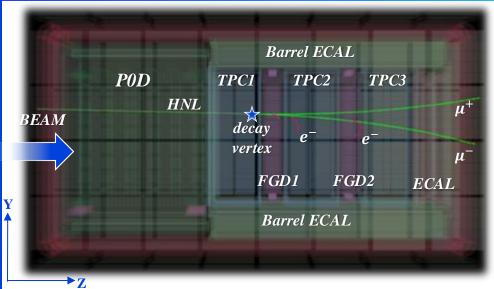
- Background <u>colored</u> histogram
- Signal <u>black</u> dots

Systematics

•	Detector	systematics:
---	----------	--------------

HNL decay mode	$N \rightarrow e^{-}\pi^{+}$	$N o \mu^- \mu^+ u$	$N \to e^- e^+ \nu$	$N ightarrow e^- \mu^+ u$
M_N, MeV	250	350	105	130
B field distortion	0.27%	0.27%	0.09%	0.09%
Momentum scale	0.06%	0.03%	0.04%	0.14%
Momentum resolution	0.45%	0.34%	0.49%	0.28%
TPC PID	0.92%	0.75%	1.41%	0.9%
ECal EM resolution	-	0.78%	-	-
ECal EM scale	-	0.42%	-	-
Position resolution	0.14%	0.22%	0.94%	0.12%
Parent decay	0.03%	-	-	0.02%
Charge identification efficiency	0.11%	0.04%	0.1%	0.03%
TPC cluster efficiency	0.0005%	0.00057%	0.00034%	0.00079%
TPC track efficiency	0.38%	0.16%	0.23%	0.35%
TPC-FGD match efficiency	0.04%	0.02%	0.03%	0.03%
Pion secondary interactions	2.21%	-	-	-
TPC-ECAL match efficiency	-	1.26%	-	-
ECAL PID	-	3.96%	-	-

All	2.49%	4.34%	1.79%	1.03%
	,.	210 27 0	200070	210070


• Flux systematics (preliminary):

20% for K^{\pm} and 10% for π^{\pm} [6]

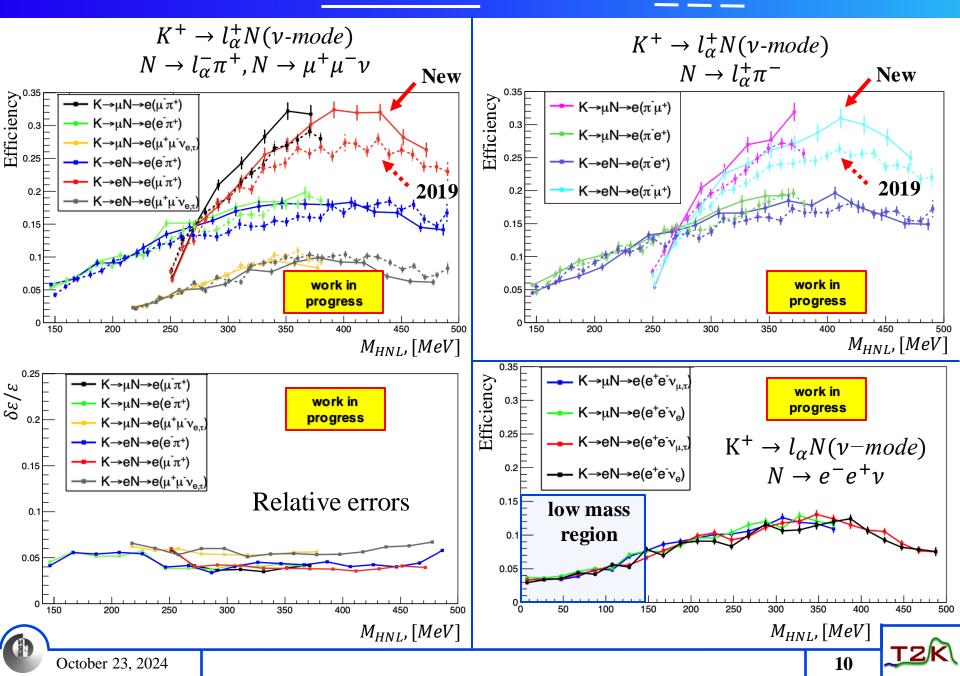
ECAL used only for $N \rightarrow \mu^+ \mu^- \nu$

ECAL related:

- TPC-ECAL match efficiency
- ECAL PID
- EM Energy resolution and scale

TPC related:

- Magnetic field distortions
- Momentum resolution and scale
- TPC PID
- Charge confusion
- Cluster efficiency
- Track efficiency
- TPC-FGD match efficiency
- Pion Secondary Interactions


Specific for the analysis:

9

- Position resolution
 - Parent decay

6. K. Abe, et. al. "Improved constraints on neutrino mixing from the T2K experiment with 3.13×10^{21} protons on target". Physical review D 103, 112008 (2021)

Efficiency: new analysis (solid lines) vs 2019 [5] (dashed)

Background

Dominant contribution (for N $\rightarrow \mu^{\pm}\pi^{\mp}$ and N $\rightarrow \mu^{+}\mu^{-}$) is

neutrino-induced coherent pion production on argon nuclei in TPC gas:

$$\nu_{\mu} + Ar \to \mu^{-} + \pi^{+} + Ar$$

- Light neutrino interactions estimation with NEUT Monte-Carlo generator [7]
- Constraints with real data via control samples
- Control samples:
- 1. Inverted polar angle \rightarrow resonant π production,
- quasi-elastic processes on Ar
- 2. Events in TPC dead material $\rightarrow \gamma$ conversions

Mode	Ch.	Expected	Uncertainties
widde		background	total
	$\mu^{\pm}\pi^{\mp}$	1.543	0.516
ino.	$e^{-}\pi^{+}$	0.376	0.259
neutrino	$e^+\pi^-$	0.328	0.250
	$\mu^+\mu^-$	0.216	0.133
	e^+e^-	0.563	0.233
	$\mu^{\pm}\pi^{\mp}$	0.384	0.202
- ino	$e^{-}\pi^{+}$	0.018	0.020
anti- neutrinc	$e^+\pi^-$	0.219	0.243
a ne	$\mu^+\mu^-$	0.038	0.040
	e^+e^-	0.015	0.016

Expected background *in 2019* analysis [5]

11

Total exposure (protons-on-target): 12.34×10^{20} in ν -mode, 6.29×10^{20} in $\overline{\nu}$ -mode

October 23, 2024

7. Hayato, Y., Pickering, L., et. al. "The NEUT neutrino interaction simulation program library". Eur. Phys. J. Spec. Top. 230, 4469–4481 (2021)

Conclusion

New search for heavy neutrinos in T2K ND280 *in progress*:

- In 2019 T2K set still competitive limits in mass range $140 < m_N < 493 MeV$
- New analysis based on **updated tracking** and extended to **low masses** $m_N < 140 MeV$

Current status:

For π^{\pm} , K^{\pm} decays to HNLs in ν - and $\bar{\nu}$ -beam modes:

- Selection criteria reviewed
- Signal efficiencies increased
- Preliminary estimation of systematics

In progress:

- Background studies and constraints
- Updates to statistical framework

The work is supported by Russian Science Foundation (RSF) grant №22-12-00358.

Author is grateful for the contribution given by Yu. Kudenko and T2K collaboration members.



THANK YOU FOR ATTENTION!

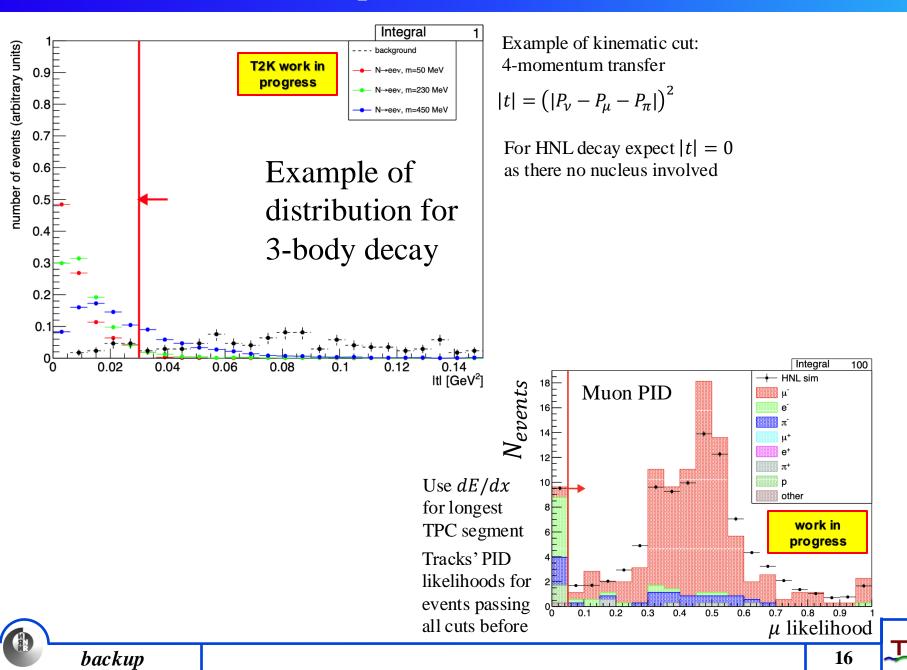
Heavy neutrino decays

HNLs decay through charged or neutral current. Considered decay modes:

- Assuming $M_2 \sim M_3 \equiv M_N$, hence experiment sensitive to $|U_{\alpha}|^2 = \sum_{I=\{2,3\}} |\Theta_{\alpha I}|^2$
- Look for heavy neutrino decay after their production, study kinematics of daughter particles. Sensitive to $U_{\alpha}^{2}U_{\beta}^{2}$

Schematic of production and decay modes included in analysis for HNL with $M_N < 493 MeV/c^2$. Bars show allowed kinematic regions for each decay mode with the corresponding mixing element(s).

Example:


meson decays $H^{\pm} \rightarrow l_{\alpha}^{\pm} N_{I}$, $BR \sim |\Theta_{\alpha I}|^{2}$ HNL decays: $N_{I} \rightarrow l_{\beta}^{\pm} \pi^{\mp}$, $BR \sim |\Theta_{\beta I}|^{2}$

Experiment is sensitive to $U_{\alpha}^{2}U_{\beta}^{2}$, where $|U_{\alpha}|^{2} = \sum_{I=\{2,3\}} |\Theta_{\alpha I}|^{2}$

15

backup

Selection criteria examples

Simulation strategy

• Start from standard ν flux, apply event-by-event weighting, kinematics modification:

1. $m_{\nu} \neq m_N$, hence change kinematics of parent meson decay

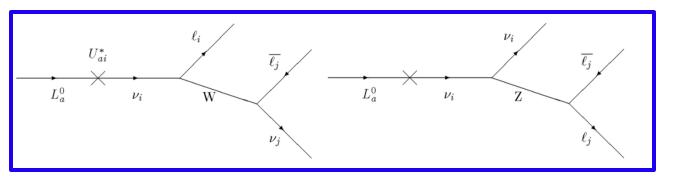
2. BR($K \rightarrow l_{\alpha} \nu_{\alpha}$) changed to BR($K \rightarrow l_{\alpha} N$) assuming $U_{\alpha} = 1$

- *Events in TPC gas fiducial volume* to reduce background from v interactions
- HNL decays simulated randomly along trajectories in TPCs

Fiducial Volume in TPCs:

	TPC 1	TPC 2	TPC 3
Χ	[-870	(;-20] or $[20]$; 870]
Υ		[-930; 1030]	
Ζ	[-725; -162]	[634; 1197]	[1993; 2556]

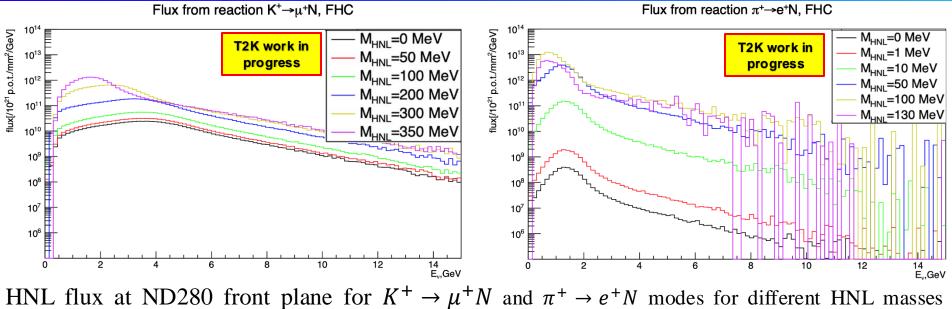
Unused Ar | [-870, -20], [20, 870] | [-930, 1030] | [-784, -725] [575, 634] [1934, 1993]



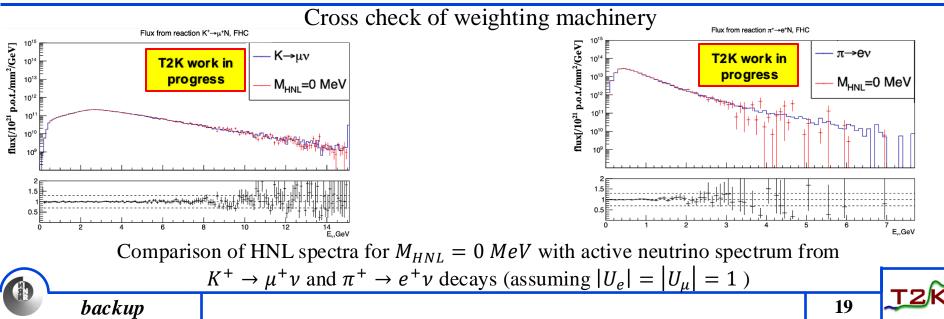
17

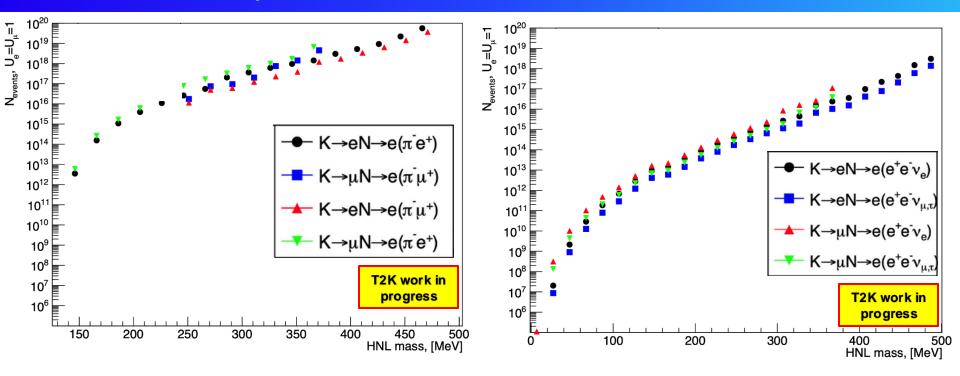
Constraints on $|U_{\tau}|$

 $N \rightarrow \mu^+ \mu^- \nu_\mu$ (NC, CC) and $N \rightarrow \mu^+ \mu^- \nu_{e,\tau}$ (NC) modes:

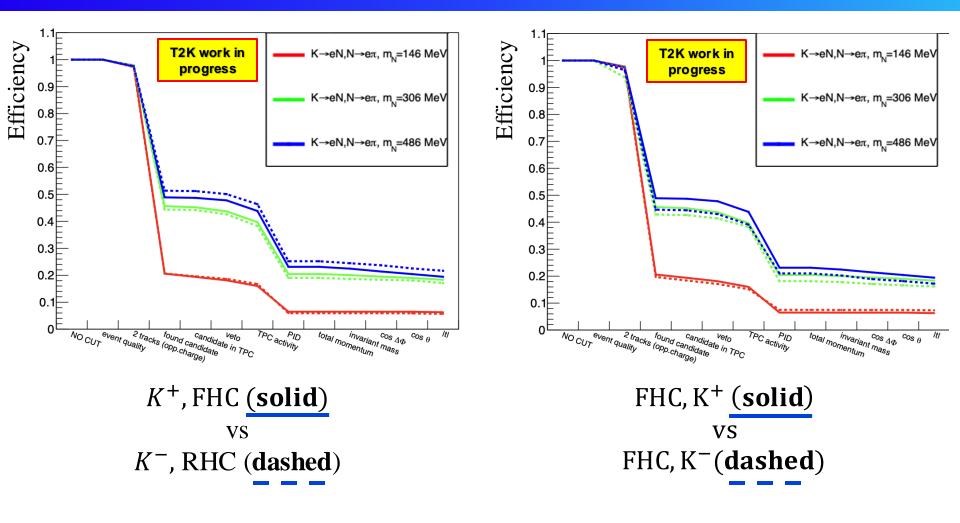


Feynman diagrams for HNL decay $N \rightarrow \mu\mu\nu$ via CC (left) an NC (right)


With NC any type of active neutrino can be produced $(v_e, v_\mu, v_\tau) \rightarrow$ sensitive to $|U_\tau|$, e.g. $K \rightarrow eN, N \rightarrow \mu^+ \mu^- v_{e,\tau}$ sensitive to $(U_e)^2 (U_e^2 + U_\tau^2)$

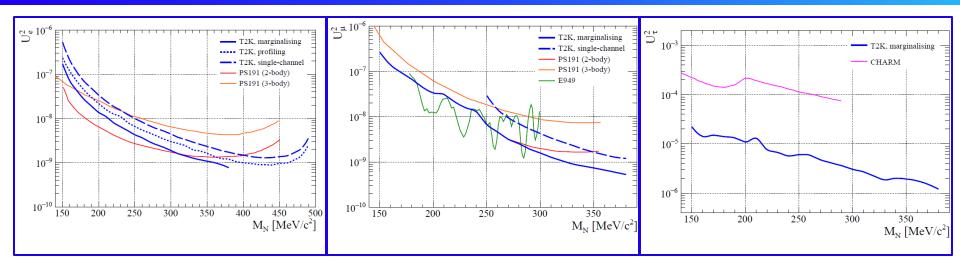

Heavy neutrino flux

HNL flux at ND280 front plane for $K^+ \to \mu^+ N$ and $\pi^+ \to e^+ N$ modes for different HNL masses assuming $|U_e| = |U_{\mu}| = 1$


Number of decays in TPCs

Number of decays in the TPCs for different production and decay modes as a function of heavy neutrino mass. It is given for FHC K^+ decay assuming $|U_e| = |U_\mu| = 1$ and scaled to $10^{21} POT$

Efficiency vs selection criteria applied one-by-one



TZK

2019 results

90% upper limits on mixing elements as a function of HNL mass. "Combined" and "single-channel" approaches.

<u>Blue dashed lines</u> – single-channel approach (one single HNL production and decay mode considered at a time) <u>Blue solid lines</u> – after marginalization over other mixing elements.

Top left plot: <u>blue dotted line</u> – profiling used ($U_{\mu}^2 = U_{\tau}^2 = 0$). Limits compared to PS191, E949, CHARM. Figures taken from [*].

Expected sensitivity

 U_{α} limits can be set with two approaches:

1. "Single-channel": each HNL production & decay mode independently

For example, $\mu^{\pm}\pi^{\mp}$ channel can constrain: - U_{μ}^{2} considering only $K^{\pm} \rightarrow \mu^{\pm}N, N \rightarrow \mu^{\pm}\pi^{\mp}$

- or $U_e \times U_\mu$ considering only $K^{\pm} \to e^{\pm}N, N \to \mu^{\pm}\pi^{\mp}$
- 2. "Combined": all HNL production & decay modes simultaneously
- limits on U_{α} ($\alpha = e, \mu, \tau$) without assumptions about U_{α} hierarchy

Example:

- Using $N \to \mu\mu\nu$ mode, we can put a limit on $U_e\sqrt{U_e^2 + U_\tau^2}$ with assumption $U_\mu \ll U_e$, where contribution comes only from $K \to eN$, $N \to \mu^+\mu^-\nu_{e,\tau}$
- With "combined" approach we can put limits on each individual U_{α} ($\alpha = e, \mu, \tau$) without assumptions about U_{α} hierarchy

23

Expected sensitivity

"Combined" approach:

For channel *A* the contribution of mode *i* is characterized by:

- expected number of decays Φ_i assuming $U_e^2 = U_{\mu}^2 = U_{\tau}^2 = 1$
- selection efficiency of decays in current channel, $\varepsilon_{A,i}$
- actual values of $U_{e,\mu,\tau}^2$ via the factor $f_i = U_{\alpha}^2 \sum U_{\beta_i}^2$

 $\alpha, \beta_j \in \{e, \mu, \tau\}, \alpha - \text{flavor in HNL production}, \beta_j - \text{flavors in HNL decay}$

Expected number of events N_A in channel A (with background B_A):

$$N_A = B_A + \sum_i \varepsilon_{A,i} \times f_i(U_e^2, U_\mu^2, U_\tau^2) \times \Phi_i$$

Bayesian approach. Likelihood for observed number of events n_A^{obs}

$$L = \prod_{A} Poisson (n_A^{obs}, N_A)$$

PyMC Markov Chain method used for integration. 90% domains are defined by profiling/marginalizing over other mixing elements.

24

Systematics

Flux systematics:

20% for K^{\pm} and 10% for π^{\pm} [*] preliminary estimation!

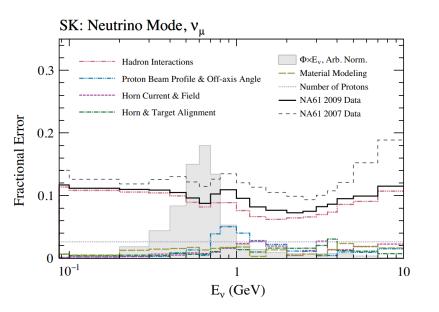
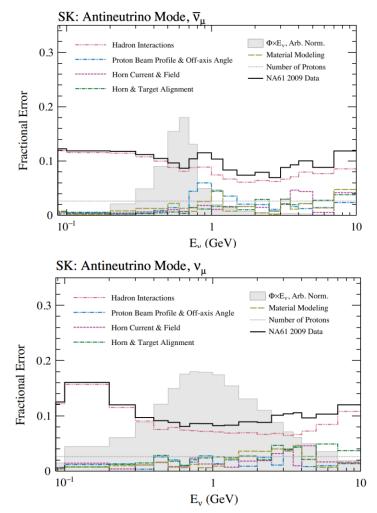



FIG. 2. The fractional systematic uncertainty on the ν_{μ} flux at SK in FHC mode (top), on the right-sign $\bar{\nu}_{\mu}$ flux at SK in RHC mode (middle), and on the wrong-sign ν_{μ} flux at SK in RHC mode (bottom). The solid black line shows the current total fractional uncertainty (NA61/SHINE 2009 data), while the dashed black line in the top panel shows the fractional uncertainty from an earlier flux prediction (NA61/SHINE 2007 data).

25

backup

Selection criteria

- Required 2 close opposite charge tracks in TPC with extrapolated vertex in TPC Fiducial Volume
- Veto cuts: no activity in detector upstream to TPC where decay occurred (e.g. FGD1 for TPC2)
- No additional good quality tracks in the TPC
- Analysis branches: $\mu^{\pm}\pi^{\mp}$, $e^{-}\pi^{+}$, $e^{+}\pi^{-}$, $\mu^{+}\mu^{-}$, $e^{+}e^{-}$
- PID cuts: use TPC dE/dx to build corresponding PID likelihoods (e.g. $\mathcal{L}_{\mu}, \mathcal{L}_{\pi}, \mathcal{L}_{e}$)
- For $N \to \mu\mu\nu$ use ECAL PID
- Kinematic cuts:
 - total HNL momentum
 - angle between HNL daughter tracks
 - invariant mass
 - polar angle (between HNL direction and Z-axis)
 - 4-momentum transfer $|t| \equiv (P_{\nu} P_{\mu} P_{\pi})^2$

