

Supported by the Russian Science Foundation project #22-22-00384

National Center FOR PHYSICS AND MATHEMATICS

Status and Physics Potential of SATURNE

Konstantin Kouzakov *on behalf of*

The SATURNE Collaboration

The 7th international conference on particle physics and astrophysics 22-25 October 2024, Moscow

The main goals of the experiment are

- first observation of coherent elastic neutrino-atom scattering (CE_{*V*AS)}
- **search for neutrino magnetic moment**

using a high-intensity tritium neutrino source: at least **1 kg, possibly up to 4 kg of T²**

CEAS: Coherent Elastic Neutrino-Atom Scattering

Yu. V. Gaponov and V. N. Tikhonov,

Elastic scattering of low energy neutrinos by atomic systems, Yad. Fiz. (USSR) 26 (1977) 594 (in Russian).

Abstract. Elastic scattering of low energy neutrinos by atomic systems is treated. For the *V* variant of weak interaction scattering on the total system (on electrons, protons and neutrons) is coherent; for the *A* variant neutrino scatters coherently on using simple atomic systems. The result for an arbitrary atom is presented. The analysis shows that at neutrino energies ≤ 10 keV a region of coherent optical neutrino phenomena exists where the neutrino elastic scattering by an atom as a whole dominates.

So far there is no corresponding experimental observation. An experimental study of CEvAS could provide a unique test of the SM neutrino interactions at very low energies.

CE_VAS vs CE_VNS

CENS: Coherent Elastic Neutrino-Nucleus Scattering

predicted by D. Z. Freedman, PRD 9 (1974) 1389; V. B. Kopeliovich & L. L. Frankfurt, ZhETF Pis. Red. 19, No. 4 (1974) 236 observed by D. Akimov et al. (COHERENT Collab.), Science 357 (2017) 1123

 $CE\nu NS$ \blacktriangleright $|\vec{q}| R_{\text{nuc}} \ll 1$ ~10 ket \vec{q} is the momentum transfer R_{nuc} is the nuclear radius 200 Mey $CE\nu AS$ \blacktriangleright $|\vec{q}| R_{\text{atom}} \ll 1$ R_{atom} is the atomic radius 20.5 CEvNS: $E_v \lesssim 1/R_{\text{nuc}} \sim 200 A^{-1/3} \text{MeV}$ CE ν AS: $E_{\nu} \lesssim 1/R_{\text{atom}} \sim 1 - 10 \text{ keV}$

Tritium neutrinos

In contrast to stopped-pion beams ($\langle E_\nu \rangle$ ~30 MeV) and nuclear reactors $(\langle E_{\nu}\rangle \sim 1 \text{ MeV})$, with a tritium neutrino source it is possible **to fulfill the coherence condition in elastic neutrino-atom scattering**

Atomic recoil energy scale in $CEvAS$

From energy-momentum conservation it follows that

 T_R is energy transfer, or atomic recoil energy *m* ≈ *A* GeV is atomic mass

If
$$
E_{\nu}
$$
~10 keV: $T_R \le \frac{200}{A}$ meV
For the lightest atom (A=1): $T_R \le 200$ meV

Light atomic targets, such as H or He, are needed to observe $CEvAS$

He-4 atomic recoil spectrum with tritium \bar{v}_e

M. Cadeddu, F. Dordei, C. Giunti, K. Kouzakov, E. Picciau, A. Studenikin, PRD 100 (2019) 073014

$$
\frac{d\sigma_{\rm SM}}{dT_R} = \frac{G_F^2 m}{\pi} \left[Z \left(\frac{1}{2} - 2\sin^2 \theta_W \right) - \frac{1}{2} N + Z \left(\frac{1}{2} + 2\sin^2 \theta_W \right) F_{\rm el}(q^2) \right]^2 \left(1 - \frac{mT_R}{2E_V^2} \right)
$$
\n
$$
\frac{d\sigma_{\mu\nu}}{dT_R} = \frac{\pi \alpha^2 Z^2}{m_e^2} |\mu_\nu|^2 \left(\frac{1}{T_R} - \frac{1}{E_\nu} \right) [1 - F_{\rm el}(q^2)]^2 \qquad \text{with} \quad q^2 = 2mT_R
$$

500 kg of helium 60 g of tritium 5 yrs of taking data

Neutrino magnetic moment $μ$ ^{*ν*}

C. Giunti and A. Studenikin, Neutrino electromagnetic interactions: A window to new physics, Rev. Mod. Phys. 87 (2015) 531; arXiv:1403.6344

[Alexander Studenikin, ICPPA-2024]

The effective neutrino electromagnetic vertex under the Lorentz and gauge invariance:

$$
\Lambda_{\mu}^{(\text{EM};\nu)\text{fi}}(q) = \left(\gamma_{\mu} - \frac{q_{\mu}q}{q^2}\right) \left[f_Q^{\text{fi}}(q^2) - q^2 f_A^{\text{fi}}(q^2)\gamma_5\right] - i\sigma_{\mu\nu}q^{\nu}\left[f_M^{\text{fi}}(q^2) + i f_E^{\text{fi}}(q^2)\gamma_5\right]
$$

In the minimally extended SM with addition of right-handed massive Dirac neutrinos:

$$
\mu_{\nu} \simeq 3.2 \times 10^{-19} \mu_B \left(\frac{m_{\nu}}{1 \text{ eV}}\right)
$$

K. Fujikawa and R. Shrock,
PRL **45** (1980) 963

mν  < 0.45 eV at 90% CL *M. Aker et al. (The KATRIN Collaboration), arXiv:2406.13516v1 [nucl-ex]*

Much greater μ_{ν} values are predicted beyond the minimally extended SM

World leading upper bounds on $μ$ _ν

Laboratory bounds (elastic $v - e^-$ scattering)

solar neutrinos (XENONnT)

A. Khan, Phys. Lett. B 837 (2023) 137650 μ ^{*ν*} < 6.3×10⁻¹² μ ^{*B*}

 CEv NS bounds *V. De Romeri et al., JHEP 04 (2023) 035* μ_{v_e} < 3.8×10⁻⁹ μ_B $\mu_{\nu_{\mu}}$ < 2.6×10⁻⁹ μ_{B}

reactor neutrinos (GEMMA)

A. Beda et al., Adv. High Energy Phys. 2012 (2012) 350150 $\mu_{v_{\mathcal{C}}}$ < 2.9×10⁻¹¹ μ_{B}

Astrophysical bounds (luminosity of globular star clusters) *N. Viaux et al., Astron. & Astrophys. 558 (2013) A12; S. Arceo-Diaz et al, Astropart. Phys. 70 (2015) 1; F. Capozzi and G. Raffelt, Phys. Rev. D 102 (2020) 083007* μ_v < (1.2–2.6) \times 10⁻¹² μ_B

With CE*ν*AS, we could improve the CE*ν*NS limits by four orders of magnitude, and the world leading limits by an order of magnitude

He II detector concept to study $CEvAS$

Tritium neutrino source (1-4 kg, 10-40 MCi)

Tubular copper elements with $TiT₂$

Helium II detector (1000 L)

- Liquid He-4 at $40-60$ mK
- Array of 1000 TESs (transition edge sensors)
- 1000-channel SQUID readout

Expected results after 5 years of data collection Number of CEAS events within SM: **60 for 1 kg of T²** and **200 for 4 kg of T²** Sensitivity to neutrino magnetic moment: $\mu_{\nu} {\sim}$ (2-4)x10⁻¹³ $\mu_{\texttt{B}}$ at 90% C.L.

The overburden of 20-25 m.w.e. stops the soft and hadronic components of cosmic radiation

Search for μ ^{*v*} with atomic ionization channel

Inelastic channels:

 $\nu + X \rightarrow X^* + \nu$ $(T \geq \mathcal{E}_X)$, excitation) $\nu + X \longrightarrow X^+ + e^- + \nu$ (*T* $\geq I_X$, ionization)

 \mathcal{E}_X and I_X are atomic excitation and ionization energies

World leading laboratory constraints on μ_{ν} like those from XENNONnT and GEMMA, are obtained by studying the atomic ionization channel (elastic v – e⁻ scattering)

In **SATURNE** we develop

- Cryogenic Si crystal detector
- \blacksquare Srl₂(Eu) scintillation detector

Electron recoil spectrum for tritium \bar{v}_e on Si

The detector's energy threshold needs to be as low as possible $\frac{1}{13}$

Si detector concept

Dilution

refrigerator

TiT $,$

Si

½ model **Tritium neutrino source (1-4 kg)**

- tubular copper elements with $TiT₂$

Silicon cryodetectors (T=10-50 mK) 14125 cm³ , M=4 kg Si - TES mounted on each Si crystal

The Si detector with an ultra-low threshold E_{th} ~10 eV or even E_{th} ~1 eV owing to the Neganov-Trofimov-Luke effect *(heat amplification of ionization signal) B. Neganov and V. Trofimov, USSR patent no. 1037771, Otkrytia i Izobreteniya 146 (1985) 215; P. N. Luke, J. Appl. Phys. 64 (1988) 6858*.

Expected results after 1 year of data collection Number of events within SM: **10 for 1 kg of T²** and **40 for 4 kg of T²** Sensitivity to neutrino magnetic moment: $\mu_{\rm v} {\sim}$ (1-1.5)x10⁻¹² $\mu_{\rm B}$ at 90% C.L.

SrI² (Eu) scintillation detector concept

½ model **Tritium neutrino source (1-4 kg)** Tubular copper elements with $TiT₂$

> **15х15х25 mm³SrI² (Eu) crystals operating at T from -60 to -40 °C, total mass is M=14 kg**

Abdurashitov, Vlasenko, Ivashkin, Silaeva, Sinev, Phys. Atom. Nuclei 85 (2022) 701

- SiPM readout (4 SiPMs per each crystal)

- Light collection at a level of 50 p.e./keV
- Energy threshold is E_{th} ~100 eV

Expected results after 1 year of data collection Number of events within SM: **25 for 1 kg of T²** and **100 for 4 kg of T²** Sensitivity to neutrino magnetic moment: μ_v ~ (1.5-2)x10⁻¹² μ_B

Summary and outlook

- **The Sarov tritium neutrino experiment** aims at
- (i) first observation of **coherent elastic neutrino-atom scattering** to test SM neutrino interactions at unprecedentedly low energies
- (ii) search for **neutrino magnetic moment**
- **A high-intensity tritium neutrino source** is being prepared
- at least **1 kg, 10 MCi** (possibly up to **4 kg, 40 MCi**)
- **A 1000-L He II detector** is being developed (to be **ready by 2027**) - observation of **CEAS (2032)**
- **-** sensitivity to $\mu_{\rm v} {\sim}$ **(2-4)x10**⁻¹³ $\mu_{\rm B}$ **(2032)**

A 4-kg Si detector is being developed (to be **ready by 2026**) **-** sensitivity to $\mu_{\rm v} {\sim}$ **(1-1.5)x10⁻¹²** $\mu_{\rm B}$ **(2027)**

A 14-kg SrI² (Eu) detector is being developed (to be **ready by 2025**) **-** sensitivity to $\mu_{\rm v} {\sim}$ **(1.5-2)x10**⁻¹² $\mu_{\rm B}$ **(2026)**

Progress of experimental sensitivity to μ_{ν}

Thank you for your attention!

Backup

The SATURNE Collaboration

National Center FOR PHYSICS AND MATHEMATICS

RUSSIAN FEDERAL NUCLEAR CENTER

ALL-RUSSIAN RESEARCH INSTITUTE OF EXPERIMENTAL PHYSICS

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Tritium neutrino source (TNS)

The basic design scheme of a tritium neutrino source (TNS) has been worked out in *A.A. Yukhimchuk et al. Fusion Science and Technology 48, No.1 (2005) 731-736.*

Construction of a tubular tritium element

1 – titanium tritide; 2 – body

TNS is a set of tritium elements in which tritium is in a chemically bound state on titanium.

Titanium powder in bulk is placed in the tritium element. Then the titanium powder is thermally activated and saturated with tritium, after which the tritium element is sealed.

Proposals for light dark matter searches with He II

SPICE/HeRALD [*R. Anthony-Petersen et al., arXiv:2307.11877v1 [physics.ins-det]*] **DELight** [*B. von Krosigk et al., arXiv:2209.10950v1 [hep-ex]*]

Advantages of superufluid He target:

- extreme intrinsic radiopurity
- high impedance to external vibration noise
- unique "quantum evaporation" signal channel enabling the detection of quasiparticle modes (rotons and phonons) via liberation of ⁴He atoms into a vacuum

S.A. Hertel et al., PRD 100 (2019) 092007

Fig. Simplified detector layout

Detection method to study $CEvAS$

Quasiparticle readout: Quantum evaporation of He atom

○ Graphene-fluorine surface

[D. McKinsey, SNOLAB Workshop 2021]

Discrimination of background events

General view of the cryostat

The test He II cell for TRITON 200

@ JINR & Nizhny Novgorod State Technical University

Purpose: To test the possibility of (i) generation of various excitations in helium (phonons, rotons, scintillations) by various controlled methods (thermal, mechanical, irradiation with various particles) and (ii) registration of these excitations by microcalorimetric detectors of various types

Transition edge sensor

Thin-film metal structures for microcalorimeters

@ Institute for Physics of Microstructures, RAS, Nizhny Novgorod

Post-growth and diagnostic methods Ultraviolet lithography (Suss MJB4); Plasma etching (Oxford Plasmalab 8); X-Ray Diffractometry (BrukerD8 Discover); Secondary-ion mass spectrometry (TOF.SIMS-5); Atomic force microscopy

Studies of film electric properties

@ Nizhny Novgorod State Technical University

Neganov-Trofimov-Luke effect

Phonon amplification of ionization signal

Observed Phonon Energy = $E_{\text{Recoil}} + E_{\text{NTL}}$

[B. von Krosigk (on behalf of the SuperCDMS Collaboration), IDM2018]