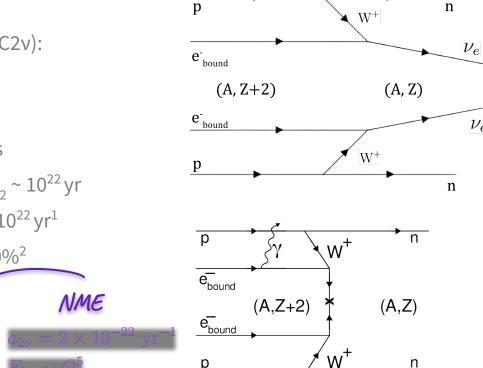
Search for two-neutrino double electron capture on ³⁶Ar with DarkSide-50 detector

Preliminary results

Lychagina O.^{1,2}, Gromov M.^{1,3}, Smirnov O.¹, Karpeshin F.⁴

on behalf of the DarkSide collaboration ¹JINR, ²Faculty of Physics, MSU, ³SINP MSU, ⁴VNIIM

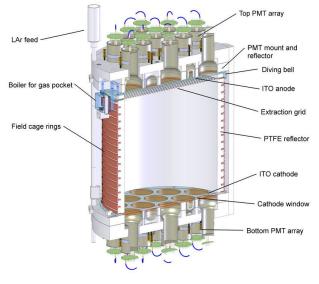

ICPPA-2024, October 26th 2024

Introduction

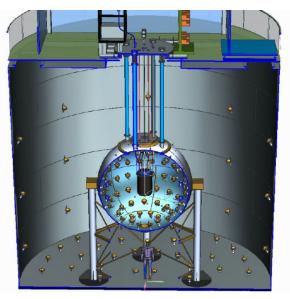
Two neutrino double electron capture (2EC2v):

- is possible for 34 isotopes
- the only decay option for 12 isotopes
- the lower theoretical predictions: $T_{1/2} \sim 10^{22}$ yr
- for ¹²⁴Xe: $T^{2EC2v}_{1/2} = (1.8 \pm 0.5 \pm 0.1) \times 10^{22} \text{ yr}^{1}$
- for ⁷⁸Kr: $T^{2EC2v}_{1/2} > 1.9 \times 10^{22}$ yr, CL = 90%²

 $(T_{1/2}, 2\nu)^{-1} = \frac{a_{2\nu}F_{2\nu}|M_{2\nu}|^2}{\ln 2}$

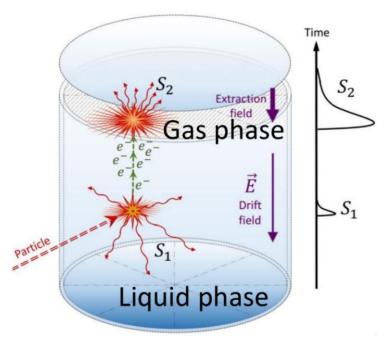


¹S.S. Ratkevich, A.M. Gangapshev et al. Comparative study of the double K-shell-vacancy production in single- and double-electron capture decay. Physical Review C. 96 (2017) ² XENON Collaboration, Observation of two-neutrino double electron capture in ¹²⁴Xe with XENON1T. Nature 568, 532–535 (2019)


 ν_e

The DarkSide-50 experiment

DarkSide-50 — experiment to search for dark matter particles; two-phase time-projection chamber filled with liquid ultra-pure argon. (underground argon data were taken from December 12, 2015, to February 24, 2018)


TPC scheme

Detector scheme

The principle of particle detection

- The charged particle causes a scintillation flash (S1) and ionization of the medium;
- Electroluminescence occurs in a gaseous medium (S2);
- The time interval between S1 and S2 allows to determine the Z coordinate;
- S2 position gives XY coordinates of the event;
- The ratio of amplitudes S1 and S2 is used to discriminate events from an electron and a recoil nucleus.

Underground argon — the active medium in the DarkSide

- 40 Ar was formed from decay of 40 K:
- ${}^{40}\mathrm{K} + e^- \rightarrow {}^{40}\mathrm{Ar} + \nu_e + \gamma$
- ³⁹Ar was formed in the atmosphere by cosmic rays: ${}^{40}{
 m K}+n \rightarrow {}^{39}{
 m Ar}+2n+\gamma$

The use of argon from underground deposits will reduce the contribution of this component.

- ³⁹Ar is the background source for the experiment and limits the sensitivity at low energies;
- The vast majority of primordial argon consists of isotopes ³⁶Ar and ³⁸Ar, because on Earth, potassium is 660 times more abundant than argon.

³⁶Ar was formed during the spontaneous fission of heavy nuclei, as well as in the (α , n) reactions on nuclei of light elements contained in uranium-thorium minerals, such as ³⁶Cl and ³³S:

 $^{36}\mathrm{Cl} \rightarrow ^{36}\mathrm{Ar} + e^- + \bar{\nu_e}$

 $^{33}\mathrm{S} + ^{4}\mathrm{He} \rightarrow ^{36}\mathrm{Ar} + n$

abundance of ³⁶Ar in AAr and UAr is 0.334%³ and 0.012%⁴ respectively.

³ <u>B. Marty and F. Humbert, "Nitrogen and argon isotopes in oceanic basalts," Earth</u> <u>Planet Sci. Lett. 152, 101–112 (1997)</u>

"The noble gas geochemistry of natural CO2 gas reservoirs from the colorado plateau and rocky mountain provinces, USA". <u>Geochimica et Cosmochimica Acta</u>, <u>72(4):1174–1198, 2008</u>

⁴S. Gilfillan, C.Ballentine at al.,

2EC2v on ³⁶Ar

 $2e^- + {}^{36} \operatorname{Ar} \longrightarrow {}^{36} \operatorname{S} + 2\nu_e$

The processes of relaxation after 2EC2v:

- an emission of Auger electrons;
- a characteristic photons.

ν x-ra Auger electror

2EC2v release as:

- *KK*-capture (~74%)
- *KL*-capture (~26%)

Theoretical calculations:

Emission induced by the 2EC2v reaction

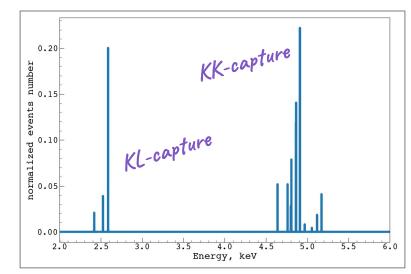
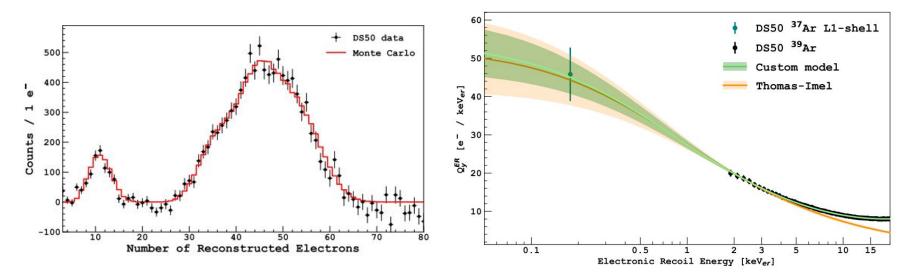
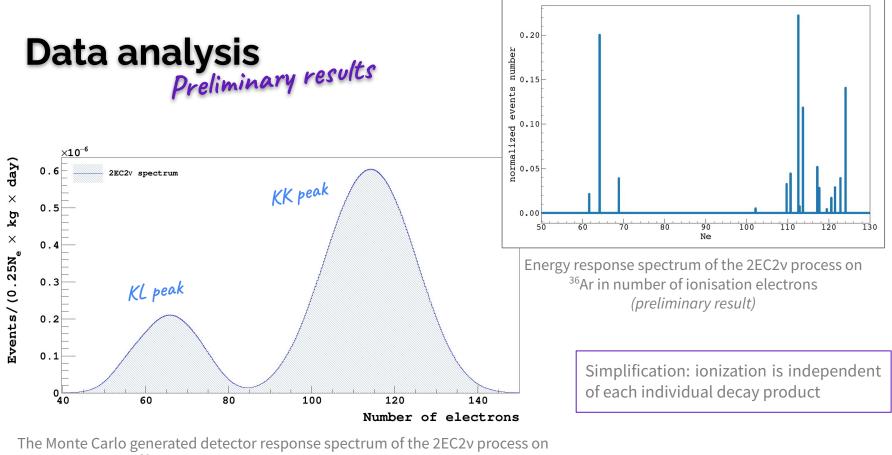

1st step	E_1 , eV	P_1	2nd step	E_2 , eV	P_2	3rd step	E_3 , eV
			$KL_{23}L_{23}$	2099	30%		4×150
$KL_{23}L_{23}^{1}$	2211	62%	KL_1L_{23}	2053	19%	LMM	4×150
			KL_1L_1	1996	6%		4×150
			$\gamma \longrightarrow {\rm ph.e}$	2100	7%		3×150
KL_1L_{23}	2181	23.5%	$KL_{23}L_{23}$	2080	16%	LMM	4×150
			KL_1L_{23}	2024	3.9%		4×150
			$\gamma \longrightarrow {\rm ph.e}$	2170	3.8%		3×150
$\gamma \longrightarrow ph.e$	2470	9.4%	$KL_{23}L_{23}$	2102	5.6%	LMM	4×150
			KL_1L_{23}	2048	2.5%		4×150
			KL_1L_1	1985	0.6%		4×150
			$\gamma \longrightarrow {\rm ph.e}$	2048	1.1%		3×150
			$KL_{23}L_{23}$	2088	4.4%		4×150
KL_1L_1	2119	5.1%	$\gamma \longrightarrow \mathrm{ph.e}$	2070	0.7%	LMM	3×150

Table 1: The *KK*-caption de-excitation channels at ³⁶Ar


• Software package DarkSide-50:lowmass

1st step	E_1 , eV	P_1	2nd step	E_2 , eV
$KL_{23}L_{23}$	2107	77%		3×160
KL_1L_{23}	2045	15%	LMM	3×160
$\gamma \longrightarrow ph.e.$	2063	8.2%		2×178

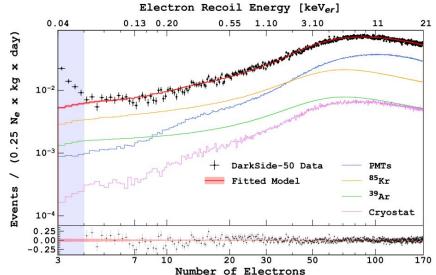
Table 2: The *KL*-caption de-excitation channels at ³⁶Ar


Calibration of the ionization response

Comparison between the best fitted simulated spectrum and ³⁷Ar data as a function of the reconstructed number of electrons.

The ER ionization yield, measured from AAr (black) and ³⁷Ar (teal) data with a drift field of 200 V/cm

DarkSide Collaboration, Calibration of the liquid argon ionization response to low energy electronic and nuclear recoils with DarkSide-50, Phys. Rev. D 104, 082005 (2021)



³⁶Ar, involving the *KK*- and *KL*-contributions

(preliminary result)

Data analysis

- 653.1 live-days of data (UAr)
- fiducial volume (19.4±0.3) kg
- Ne ∈ [40, 170]
- The search for 2EC2v is performed with a profile log-likelihood ratio test statistics based on the likelihood function and the generated 2EC2v signal.
- A free parameter in the fitting is the amplitude of the signal.
- Spectra under simplifying assumption of independent ionization response from each individual decay product (*work in progress*)

Background model and uncertainty (red line and shaded area) from the data fit in the [4, 170] Ne range, and the individual contributions from the internal (39Ar and 85Kr) and external components (cryostat and PMTs).

Preli

Calculation of the limit

The corresponding half-life for N_{2EC2v} is

$$T_{1/2}^{2\text{EC}2\nu} = \ln(2) \times \frac{N_A \times \eta_{\text{Ar}} \times \epsilon}{N_{2\text{EC}2\nu} \times M_A} \times M \times T,$$

where $M_A = 0.039$ kg/mol is the argon molar mass, η_{Ar} is the isotopic abundance of the argon isotope, $\epsilon = 100\%$,

M = 20 kg is the active mass of the LAr volume,

T = 651.3 days is the total lifetime.

Results

Analysis of the DarkSide-50 experiment data gives a 90% sensitivity of

$$T_{1/2}^{2\text{EC}2\nu} > 9.6 \times 10^{21} \times \eta(^{36}\text{Ar}) \text{ years}$$

$$Preliminary result$$

The values for the ³⁶Ar abundance in the DS-50 have not been measured accurately at the moment, so we left it as a free parameter.

Sensitivity for DS-20k experiment

- Fiducial mass $\approx 20 \text{ t} (\text{M}^{\text{DS-20k}} = 1000 \text{M}^{\text{DS-50}})$
- Lower background $(N_{bg}^{DS-20k} = 0.1 N_{bg}^{DS-50})$
- higher data collection efficiency
- longer exposure time (T^{DS-20k} = 5.6T^{DS-50} yr)

full DS-20k exposure = 200 t[.] yr

Assuming the DS-20k experiment will be more sensitive to rare events, the result can be improved (with the same concentration of ³⁶Ar):

$$T_{1/2}^{\text{DS-20k}} = \sqrt{\frac{1000 \cdot 5.6}{0.1}} T_{1/2}^{\text{DS-50}} > 2.3 \times 10^{24} \times \eta(^{36}\text{Ar}) \text{ yr (90\% CL)}$$

$$Preliminary \text{ result}$$

Plans for the future

- Plans include measuring the isotopic abundance of argon used in the DS-50 using mass spectroscopy.
- It would be beneficial to verify calculations using a target enriched in ³⁶Ar
- The presented analysis is planned to be carried out for the next generation DarkSide detector.

Thanks for your attention!