Latest results from Daya Bay experiment based on full dataset

Vitalii Zavadskyi on behalf of the Daya Bay Collaboration

ICPPA-2024

23 October 2024

シック・ 正明・ エル・ エー・ キョ・

Neutrinos

Oscillation and etc.

- Neutrino flavor oscillates with distance $(\nu_{e,\mu,\tau} \rightarrow \nu_{\mathsf{X}})$
- Oscillation can be studied at accelerators, Sun, and nuclear power plants
- Nuclear reactors are the most intensive artificial source of antineutrinos (10²⁰ v
 _e/sec/GWt)
- Energies of $\overline{\nu}_e$ is bellow 12 MeV, it allows to measure survival probability of $\overline{\nu}_e$

Dava Bay Reactor Antineutrino Experiment Overview

- Experiment was taking data from December 2011 to December 2020
- It has accumulated $\sim 5 \cdot 10^6$ events
- One of the main goals is precision measurement of sin² $2\theta_{13}$ and Δm_{23}^2
- Search for sterile neutrinos, high energy reactor antineutrinos (E > 10 MeV), measurement of ²³⁵U and ²³⁹Pu spectra

$$P(\overline{\nu}_e \to \overline{\nu}_e) \approx 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \left(\frac{\Delta m_{21}^2 L}{4E}\right) - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{ee}^2 L}{4E}\right)$$
$$- \frac{\sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{ee}^2 L}{4E}\right)}{\Delta m_{ee}^2 - \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2}$$

Survival probability

 θ_{13} only

90

 θ_{12} only

1.00

(₀) 10.95

Daya Bay Reactor Antineutrino Experiment Detector and signal events

- Liquid scintillator doped with Gd (0.1%)
- 192 8" PMT

500

ACU-B

Vitalii Zavadskvi on behalf of Dava Bav (JINR)

Prompt energy (MeV)

500

Latest results from Dava Bay experiment (ICPPA-2024)

Delayed energy (MeV)

리는 22/10/24 4 / 23

Daya Bay Reactor Antineutrino Experiment Selection of IBD candidates

- Veto events that are close in time to muons
- Temporal and spatial coincidence
- Remove spontaneous flashing from PMTs

Cuts

- Prompt signal: 0.7 MeV $< E_p < 12$ MeV
- Delayed signal: 6 MeV $< E_d < 12$ MeV
- Time window: 1 $\mu {
 m s} < \Delta t <$ 200 $\mu {
 m s}$
- Multiplicity cut: time-isolated event pairs

22/10/24 5 / 23

Daya Bay Reactor Antineutrino Experiment Data

Three periods of data taking

- 6 detectors: 0 210 days
- 8 detectors: 300 1820 days
- 7 detectors: 1850 3280 days

ightarrow 3158 days of operation

	Hall 1	Hall 2	Hall 3
IBD candidates	2 236 810	2 544 895	764 514
$ u_{e}$ rate [1/day]	1342.29	1191.18	300.57
Background rate [1/day]	21.93	16.20	4.47
Background / Signal ratio, %	1.63	1.36	1.58

Based on data from

PRL 130, 161802 (2023)

Vitalii Zavadskyi on behalf of Daya Bay (JINR)

Latest results from Daya Bay experiment (ICPPA-2024)

) 22/10/24

6 / 23

$$N_{dk}^{IBD} = \sum_{b} B_{b}^{dk} + \sum_{kj} C_{j}^{k} \sum_{t} \varepsilon_{t}^{d} T_{t}^{d} M^{d} \times$$
Background events
$$\times \int_{-1}^{+1} d \cos \theta \int_{E_{j}^{vis}}^{F_{j+1}^{vis}} dE_{vis} \frac{d\sigma(E_{\nu}, \cos \theta)}{d \cos \theta} \frac{dE_{\nu}(E_{vis}, \cos \theta)}{dE_{vis}} \times$$
2D integration
$$Cross-section$$

$$\times \sum_{r} \frac{1}{4\pi (L_{r}^{d})^{2}} \sum_{c} P(E_{\nu}, L_{r}^{d}, \Delta m_{32}^{2}, \sin^{2} 2\theta_{13}, \dots) \times$$
Distance reactor-detector
Oscillation probability
$$Spectrum \ \overline{\nu}_{e}, \ SNF_{and \ non-equilibrium \ effect} \times \left[\frac{W_{rt}}{\sum_{i'} f_{i'rt}^{i} \langle e \rangle_{i'}} \omega(E_{\nu}) \sum_{i} f_{irt} S_{i}(E_{\nu}) C_{i}(E_{\nu}) + F_{r}(E_{\nu}) \right]$$

Vitalii Zavadskyi on behalf of Daya Bay (JINR)

22/10/24 71 / 23

$$N_{dk}^{IBD} = \sum_{b} B_{b}^{dk} + \sum_{kj} C_{j}^{k} \sum_{t} \varepsilon_{t}^{d} T_{t}^{d} M^{d} \times$$
Background events

$$N_{dk}^{IBD} = \sum_{b} B_{b}^{dk} + \sum_{kj} C_{j}^{k} \sum_{t} \varepsilon_{t}^{d} T_{t}^{d} M^{d} \times$$
Detector effects
Detector mass and effective live time

$$\times \int_{-1}^{+1} d \cos \theta \int_{E_{j}^{vis}}^{E_{j+1}^{vis}} dE_{vis} \frac{d\sigma(E_{\nu}, \cos \theta)}{d \cos \theta} \frac{dE_{\nu}(E_{vis}, \cos \theta)}{dE_{vis}} \times$$
2D integration
Cross-section

$$\times \sum_{r} \frac{1}{4\pi (L_{r}^{d})^{2}} \sum_{c} P(E_{\nu}, L_{r}^{d}, \Delta m_{32}^{2}, \sin^{2} 2\theta_{13}, \dots) \times$$
Distance reactor-detector
Oscillation probability
Spectrum $\overline{\nu}_{e}$, SNF
and non-equilibrium effect

$$\times \left[\frac{W_{rt}}{\sum_{j'} f_{i'rt}(e)_{i'}} \omega(E_{\nu}) \sum_{i} f_{irt} S_{i}(E_{\nu}) C_{i}(E_{\nu}) + F_{r}(E_{\nu}) \right]$$

Vitalii Zavadskyi on behalf of Daya Bay (JINR)

22/10/24 72 / 23

$$N_{dk}^{IBD} = \sum_{b} B_{b}^{dk} + \sum_{kj} C_{j}^{k} \sum_{t} \varepsilon_{t}^{d} T_{t}^{d} M^{d} \times$$
Background events

$$\sum_{b} B_{b}^{ik} + \sum_{kj} C_{j}^{k} \sum_{t} \varepsilon_{t}^{d} T_{t}^{d} M^{d} \times$$
Detector effects
Detector mass and effective live time

$$\times \int_{-1}^{+1} d \cos \theta \int_{E_{j}^{vis}}^{E_{j+1}^{vis}} dE_{vis} \frac{d\sigma(E_{\nu}, \cos \theta)}{d \cos \theta} \frac{dE_{\nu}(E_{vis}, \cos \theta)}{dE_{vis}} \times$$
2D integration

$$\sum_{r} \frac{1}{4\pi (L_{r}^{d})^{2}} \sum_{c} P(E_{\nu}, L_{r}^{d}, \Delta m_{32}^{2}, \sin^{2} 2\theta_{13}, \dots) \times$$
Distance reactor-detector

$$\sum_{r} \frac{1}{4\pi (L_{r}^{d})^{2}} \sum_{c} NF_{irt} S_{i}(E_{\nu}) C_{i}(E_{\nu}) + F_{r}(E_{\nu})$$

$$\sum_{j'} \frac{W_{rt}}{f_{i'rt}(e_{j'})} \omega(E_{\nu}) \sum_{i} f_{irt} S_{i}(E_{\nu}) C_{i}(E_{\nu}) + F_{r}(E_{\nu})$$

Vitalii Zavadskyi on behalf of Daya Bay (JINR)

Latest results from Daya Bay experiment (ICPPA-2024)

22/10/24 7₃ / 23

$$N_{dk}^{IBD} = \sum_{b} B_{b}^{dk} + \sum_{kj} C_{j}^{k} \sum_{t} \varepsilon_{t}^{d} T_{t}^{d} M^{d} \times$$
Background events

$$\times \int_{-1}^{+1} d \cos \theta \int_{E_{j}^{vis}}^{E_{j+1}^{vis}} dE_{vis} \frac{d\sigma(E_{\nu}, \cos \theta)}{d \cos \theta} \frac{dE_{\nu}(E_{vis}, \cos \theta)}{dE_{vis}} \times$$
2D integration

$$\times \sum_{r} \frac{1}{4\pi (L_{r}^{d})^{2}} \sum_{c} P(E_{\nu}, L_{r}^{d}, \Delta m_{32}^{2}, \sin^{2} 2\theta_{13}, \dots) \times$$
Distance reactor-detector

$$Spectrum \overline{\nu}_{e}, SNF_{and non-equilibrium effect} \times \left[\frac{W_{rt}}{\sum_{i'} f_{i'rt} \langle e \rangle_{i'}} \omega(E_{\nu}) \sum_{i} f_{irt} S_{i}(E_{\nu}) C_{i}(E_{\nu}) + F_{r}(E_{\nu}) \right]$$

Vitalii Zavadskyi on behalf of Daya Bay (JINR)

22/10/24 74 / 23

$$N_{dk}^{IBD} = \sum_{b} B_{b}^{dk} + \sum_{kj} C_{j}^{k} \sum_{t} \varepsilon_{t}^{d} T_{t}^{d} M^{d} \times$$
Background events
Detector effects
Detector mass and effective live time
$$\times \int_{-1}^{+1} d \cos \theta \int_{E_{j}^{vis}}^{E_{j+1}^{vis}} dE_{vis} \frac{d\sigma(E_{\nu}, \cos \theta)}{d \cos \theta} \frac{dE_{\nu}(E_{vis}, \cos \theta)}{dE_{vis}} \times$$
2D integration
Cross-section
$$\times \sum_{r} \frac{1}{4\pi (L_{r}^{d})^{2}} \sum_{c} P(E_{\nu}, L_{r}^{d}, \Delta m_{32}^{2}, \sin^{2} 2\theta_{13}, ...) \times$$
Distance reactor-detector
Oscillation probability
Spectrum $\overline{\nu}_{e}$, SNF
and non-equilibrium effect $\times \left[\frac{W_{rt}}{\sum_{i'} f_{i'rt} \langle e \rangle_{i'}} \omega(E_{\nu}) \sum_{i} f_{irt} S_{i}(E_{\nu}) C_{i}(E_{\nu}) + F_{r}(E_{\nu}) \right]$

Vitalii Zavadskyi on behalf of Daya Bay (JINR)

Latest results from Daya Bay experiment (ICPPA-2024)

22/10/24 75 / 23

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < < ○

Vitalii Zavadskyi on behalf of Daya Bay (JINR)

Latest results from Daya Bay experiment (ICPPA-2024)

22/10/24 7₆ / 23

Vitalii Zavadskyi on behalf of Daya Bay (JINR)

Latest results from Daya Bay experiment (ICPPA-2024)

22/10/24 77 / 23

Vitalii Zavadskyi on behalf of Daya Bay (JINR)

Latest results from Daya Bay experiment (ICPPA-2024)

22/10/24 78 / 23

Vitalii Zavadskyi on behalf of Daya Bay (JINR)

Latest results from Daya Bay experiment (ICPPA-2024)

22/10/24 7₉ / 23

Vitalii Zavadskyi on behalf of Daya Bay (JINR)

Latest results from Daya Bay experiment (ICPPA-2024)

22/10/24 710 / 23

- Effects and systematic are divided into 3 groups:
 - Background:

 ω^{Li} , $\overline{N}^{bkg}(Li/He)$, $N^{bkg}(AmC)$, $N^{bkg}(C(\alpha, n))$, N^{acc} , $N^{bkg}(\text{fast } n)$, S(fast n)

- **Reactor**: $E^{fission}$, W_{th} , fission fractions (f), non-equilibrium, spent nuclear fuel (SNF), $\overline{\nu}_e$ spectra uncertainties (Huber-Mueller)
- **Energy+detector**: σ_E , inner acryl vessel (IAV), non-linearity of liquid scintillator, E_{scale} , ϵ
- ullet \sim 300 nuisance parameters
- Free spectrum of $\overline{\nu}_e \rightarrow$ Huber-Mueller model is used as initial

Model of observation from near detector (EH1-AD1) of Daya Bay experiment full data set

イロト イヨト イヨト イヨ

- Effects and systematic are divided into 3 groups:
 - Background: ω^{Li} , $N^{bkg}(Li/He)$, $N^{bkg}(AmC)$, $N^{bkg}(C(\alpha, n))$, N^{acc} , $N^{bkg}(\text{fast } n)$, S(fast n)
 - **Reactor**: $E^{fission}$, W_{th} , fission fractions (f), non-equilibrium, spent nuclear fuel (SNF), $\overline{\nu}_e$ spectra uncertainties (Huber-Mueller)
 - **Energy+detector**: σ_E , inner acryl vessel (IAV), non-linearity of liquid scintillator, E_{scale} , ϵ
- ullet \sim 300 nuisance parameters
- Free spectrum of $\overline{\nu}_e \rightarrow$ Huber-Mueller model is used as initial

- Effects and systematic are divided into 3 groups:
 - Background:

 $\omega^{Li}, N^{bkg}(Li/He), N^{bkg}(AmC), N^{bkg}(C(\alpha, n)), N^{acc}, N^{bkg}(\text{fast } n), S(\text{fast } n)$

- **Reactor**: $E^{fission}$, W_{th} , fission fractions (f), non-equilibrium, spent nuclear fuel (SNF), $\overline{\nu}_e$ spectra uncertainties (Huber-Mueller)
- **Energy+detector**: σ_E , inner acryl vessel (IAV), non-linearity of liquid scintillator, E_{scale} , ϵ
- ullet \sim 300 nuisance parameters
- Free spectrum of $\overline{\nu}_e \rightarrow$ Huber-Mueller model is used as initial

Illustration, the analysis uses a full covariance matrix

83 / 23

3ν oscillation analysis Results

Vitalii Zavadskyi on behalf of Daya Bay (JINR)

22/10/24 9 / 23

3ν oscillation analysis Global picture of Δm_{32}^2 and $\sin^2 2\theta_{13}$

Vitalii Zavadskyi on behalf of Daya Bay (JINR)

Latest results from Daya Bay experiment (ICPPA-2024)

22/10/24 101 / 23

3ν oscillation analysis Global picture of Δm^2_{32} and $\sin^2 2\theta_{13}$

Vitalii Zavadskyi on behalf of Daya Bay (JINR)

Latest results from Daya Bay experiment (ICPPA-2024)

<□>
<□>
<□>
<□>
22/10/24

102 / 23

== 900

Sterile neutrinos **Motivation**

Sterile neutrino

- is minimal possible extension of 3ν framework
- one of the possible explanations of deficit of $\overline{\nu}_e$ in the reactor experiments (Reactor Antineutrino Anomaly)
 - Experiments measure overall deficit of $\overline{\nu}_{e}$ events $(2011 \sim 3\sigma \rightarrow 2022 \sim 1\sigma)$
- one of the possible explanations of gallium anomaly ν_2
- interacts only gravitationally \rightarrow does not affect Z-boson decay into invisible mode
- is a possible dark matter candidate
- is a search for physics beyond the Standard Model

m²

 ν_1

Sterile neutrinos Results

- No significant signal of sterile neutrino was observed (p-value = 0.86)
- Obtained the world leading limits for $\sin^2 2\theta_{14}$: $2 \cdot 10^{-4} \text{ eV}^2 < \Delta m_{41}^2 < 0.2 \text{ eV}^2$

90

Sterile neutrinos Results

- No significant signal of sterile neutrino was observed (p-value = 0.86)
- Obtained the world leading limits for $\sin^2 2\theta_{14}$: $2 \cdot 10^{-4} \text{ eV}^2 < \Delta m_{41}^2 < 0.2 \text{ eV}^2$

< A

Sterile neutrinos Results

- No significant signal of sterile neutrino was observed (p-value = 0.86)
- Obtained the world leading limits for $\sin^2 2\theta_{14}$: $2 \cdot 10^{-4} \text{ eV}^2 < \Delta m_{41}^2 < 0.2 \text{ eV}^2$

123 / 23

Conclusion

Analysis of full dataset of Daya Bay experiment, one of the largest IBD dataset

- The most precise measurements of $heta_{13}$ and Δm^2_{32}
- nGd analysis is validated by independent nH analysis
- The world-leading constraints on parameters of sterile neutrinos Performed but not highlighted in this talk
 - Measurement of high energy electron antineutrinos
 - Oscillation analysis with capture of neutron on Hydrogen
 - Observation of cosmogenic isotopes of ⁸He

To be performed

- Joint sterile analysis with other experiments
- Other non-oscillation results
- Data preservation

PRL 133, 051801 (2024)	PRL 133, 051801 (2024) PRL 129, 041801 (2022) PRL 133, 151801 (2024)	PRL	130,	161802	(2023)
PRL 129, 041801 (2022)	PRL 129, 041801 (2022) PRL 133, 151801 (2024)	PRL	133,	051801	(2024)
	PRL 133, 151801 (2024)	PRL	129,	041801	(2022)

22/10/24 13 / 23

Vitalii Zavadskyi on behalf of Daya Bay (JINR)

Latest results from Daya Bay experiment (ICPPA-2024)

22/10/24 14 / 23

E 900

Backup slides Neutrino oscillation: Pontecorvo-Maki-Nakagawa-Sakata matrix

■ Pontecorvo-Maki-Nakagawa-Sakata matrix – unitary mixing matrix: massive states → flavor states /

22/10/24 15 / 23

Backup slides nGd analysis: summary of IBD events and backgrounds

	EH1-AD1	EH1-AD2	EH2-AD1	EH2-AD2	EH3-AD1	EH3-AD2	EH3-AD3	EH3-AD4
ν_e candidates	794335	1442475	1328301	1216594	194949	195469	193334	180762
DAQ live time [days]	1535.111	2686.110	2689.880	2502.816	2689.156	2689.156	2689.531	2501.7441
$\varepsilon_{\mu} \cdot \varepsilon_{m}$	0.7743	0.7716	0.8127	0.8105	0.9513	0.9514	0.9512	0.9513
Accidentals [1/day]	7.11 ± 0.01	6.76 ± 0.01	5.00 ± 0.00	4.85 ± 0.01	0.80 ± 0.00	0.77 ± 0.00	0.79 ± 0.00	0.66 ± 0.00
Fast n + muon-x [1/day]	0.83 ± 0.17	0.96 ± 0.19	0.56 ± 0.11	0.56 ± 0.11	0.05 ± 0.01	0.05 ± 0.01	0.05 ± 0.01	0.05 ± 0.01
⁹ Li/ ⁸ He [1/day]	2.92 ± 0.78	2.92 ± 0.78	2.45 ± 0.57	2.45 ± 0.57	0.26 ± 0.04	0.26 ± 0.04	0.26 ± 0.04	0.26 ± 0.04
AmC [1/day]	0.16 ± 0.07	0.13 ± 0.03	0.12 ± 0.05	0.11 ± 0.05	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02	0.03 ± 0.01
Alpha-N [1/day]	0.08 ± 0.04	0.06 ± 0.03	0.04 ± 0.02	0.06 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.03 ± 0.02	0.04 ± 0.02
$ u_e$ rate [1/day]	657.16 ± 1.10	685.13 ± 1.0	599.47 ± 0.78	591.71 ± 0.79	75.02 ± 0.18	75.21 ± 0.18	74.41 ± 0.18	74.93 ± 0.18

PRL 130, 161802 (2023)

Vitalii Zavadskyi on behalf of Daya Bay (JINR)

Latest results from Daya Bay experiment (ICPPA-2024)

▲ロト ▲園 ト ▲ヨ ト ▲目 = の Q () 22/10/24

16 / 23

Backup slides nH analysis: selection procedure

- Veto events that are close in time to muons
- Temporal and spatial coincidence
- Remove spontaneous flashing from PMTs

Cuts

- Prompt signal: 1.5 MeV $< E_p < 12$ MeV
- Delayed signal: $2.2 3\sigma$ MeV $< E_d < 2.2 + 3\sigma$ MeV
- Time window: $1\mu {\rm s} {<} \, \Delta t {<} \, 1500\mu {\rm s}, \, \delta r {+} \, \delta t / [600 \ \mu {\rm s} / {\rm m}] {<} 1 \ {\rm m}$
- Multiplicity cut: time-isolated event pairs

Three periods of data taking:

- 6AD: 0 210 days
- 8AD: 300 1820 days
- 7AD: 1850 2080 days

ightarrow 1958 days of operation

	EH1	EH2	EH3
$ u_e$ candidates	1293120	1288314	1022130
$ u_e$ rate [1/day]	1055.85	939.00	236.85
Background rate [1/day]	247.52	222.92	421.10
Background / Signal ratio, %	23.44	23.74	177.79

Based on data from PRL 133, 151801 (2024)

Vitalii Zavadskyi on behalf of Daya Bay (JINR)

Latest results from Daya Bay experiment (ICPPA-2024)

22/10/24 18 / 23

= = 900

イロト イヨト イヨト イヨ

Backup slides nH analysis: results

Best fit results:

- χ^2 /NDF = 256.7/236
- $= \sin^2 2\theta_{13} = 0.0759^{0.0050}_{-0.0049} (6.5 \%)$
- $\Delta m^2_{32} = (2.75 \pm 0.14) \times 10^{-3} \text{ eV}^2 \text{ NO} (5.1 \%)$
- $\Delta m^2_{32} = -(2.85 \pm 0.14) \times 10^{-3} \text{ eV}^2$ IO (4.9 %)
- nGd+nH sin² $2\theta_{13} = 0.0833 \pm 0.0022$ (2.6 %)

			-	sin ² 2	$\theta_{12} = 0$	0.8510
V_{e1}	V_{e2}	V_{e3}		sin ² 2	$\theta_{13} = 0$	0.0856
$V_{\mu 1}$	$V_{\mu 2}$	$V_{\mu 3}$		sin^2	$\theta_{23} = 0$	0.5432
$V_{ au 1}$	$V_{ au 2}$	$V_{ au 3}$		sin ² 2	$\theta_{14} = 0$	0.1
	Г		4		-	I
	ν	e1	l_{e2}	V_{e3}	V_{e4}	
	ν	γ _{μ1} \	$/_{\mu 2}$	$V_{\mu 3}$	$V_{\mu4}$	
	ν	$V_{\tau 1}$	$I_{\tau 2}$	$V_{ au 3}$	$V_{ au4}$	
	V	s1	/ _{s2}	V_{s3}	V_{s4}	
	L				_	

• Survival probability (vacuum) $P_{ee} = 1 - 4 \sum_{j>i}^{N_{\nu}=4} |U_{ei}|^2 |U_{ej}|^2 \sin^2\left(\frac{\Delta m_{ji}^2}{4E_{\nu}}L\right)$

Backup slides Sterile neutrinos: oscillation

Backup slides

Sterile neutrinos: oscillation

Backup slides Sterile neutrinos: oscillation

Backup slides CL_s method

- $H_0 3\nu$ oscillation $H_1 - 4\nu$ oscillation
- Minimization parameters $_{\Lambda/global} = 1 \pm 0.05$ $\Delta m^2_{32} = (2.453 \pm 0.034) \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta_{13} = 0.0853 - \text{free}$
- For each point of grid of parameters of interests (sin² $2\theta_{14}$, Δm_{41}^2) $\Delta \chi^2 = \chi^2_{4\nu} (\sin^2 2\theta_{14}, \Delta m^2_{41} \text{ are fixed}) - \chi^2_{3\nu}$

$$\begin{aligned} CL_b &= P(\Delta\chi^2 \geq \Delta\chi^2_{obs} | 3\nu) \\ CL_{s+b} &= P(\Delta\chi^2 \geq \Delta\chi^2_{obs} | 4\nu) \\ CL_s &= \frac{CL_{b+s}}{CL_b} \end{aligned}$$

Calculation of limits could be speed up with Gaussian approximation NIMA, 827, 63-78, (2016)

Vitalii Zavadskvi on behalf of Dava Bav (JINR)

- $H_0 4\nu$ oscillation with fixed values of $(\Delta m_{41}^2, \sin^2 2\theta_{14})$ $H_1 - 4\nu$ oscillation with free values of $(\Delta m_{41}^2, \sin^2 2\theta_{14})$
- For each point of $(\Delta m_{41}^2, \sin^2 2\theta_{41})$ generate MC data
- Each MC sample is obtained by $\chi^2_{H_0}$ and $\chi^2_{H_1}$
- Calculate $\Delta \chi^2 = \chi^2_{H_0} \chi^2_{H_1}$ histogram
- Calculate $\Delta \chi^2$ (DATA)
- Obtain p-value

22/10/24 23 / 23

90