Supernova neutrino search and underground physics at LVD

Natalia Agafonova, Vsevolod Ashikhmin on behalf of LVD collaboration

 $F_{im_i} = f_{bk}^2 \Delta t_{max} \sum P(k, f_{bk_i} \Delta t_i)$

 $P(k, f_{hki}, \Delta t_i)$ is the Poisson probability to have k events in the time window Δt_i if f_{hk} is the background frequency

Distributions of detected clusters versus time for the present dataset. Red dots represent clusters with imitation frequency less than $F_{im} = 1$ year⁻¹. Green, blue, red and purple lines corresponds to $F^{th} = 1$ week⁻¹, $F^{th} = 1$ month⁻¹, $F^{th} = 1$ year⁻¹, F^{th} = 1/100 year⁻¹, respectively. Cluster multiplicity greater than or

The Large Volume Detector (LVD) is located underground at a depth of 1400 m under rock (minimal depth 3000 m w.e.), in the INFN Gran Sasso National Laboratory (Italy). The experiment consists of an array of 840 scintillator counters, 1.5 m3 each, viewed from the top by three photo multipliers PMTs) and arranged in a modular geometry[9]. This modularity allows LVD to achieve a very high duty cycle, that is essential in the search of unpredictable sporadic events. Failures involving one or more counters do not affect, in general, other counters. The detector maintenance can be done during data acquisition by stopping only the part that needs to be maintained, even a single counter. This peculiarity allows a dynamic active mass Mact and a high duty cycle. The experiment has been in operation since 1992, June 9th after a short commissioning

Length× Width× Height 22.	.7×13.2×10 m
---------------------------	--------------

Iron mass	1020 t
Scintillator mass	1008 t
Amount of counters	840
Amount of PMTs	2520
Average depth (min)	3620 m w.e. 3000 m w.e.
Average muon energy	280 GeV
E_{μ} at see lev. (min.)	1.3 TeV
Muon rate (per 1 tower)	∼ 120 h ⁻¹
ε _{th} threshold –inner -external	4 MeV, 7 MeV

Thanks to a lot of time of radon counting rate (during to 18 years of observation) measuring we have got its Fourier spectrum

equal than 2 and cluster duration less than or equal 100 seconds

	ν interaction channel	E_{ν} threshold	%	
1	$\bar{\nu}_{e} + p \rightarrow e^{+} + n$	(1.8 MeV)	(88%)	
2	$v_e + {}^{12}C \rightarrow {}^{12}N + e^-$	(17.3 MeV)	(1.5%)	
3	$\bar{\nu}_{e}$ + ¹² C \rightarrow ¹² B + e^{+}	(14.4 MeV)	(1.0%)	
4	$v_i + {}^{12}\text{C} \rightarrow v_i + {}^{12}\text{C}^* + \gamma$	(15.1 MeV)	(2.0%)	
5	$v_i + e^- \rightarrow v_i + e^-$	(-)	(3.0%)	
6	$v_{\rm e}$ + ⁵⁶ Fe \rightarrow ⁵⁶ Co [*] + e^-	(10. MeV)	(3.0%)	
7	$\bar{\nu}_{\rm e}$ + ⁵⁶ Fe \rightarrow ⁵⁶ Mn + e^+	(12.5 MeV)	(0.5%)	
8	$v_i + {}^{56}\text{Fe} \rightarrow v_i + {}^{56}\text{Fe}^* + \gamma$	(15. MeV)	(2.0%)	
Reactions of neutrino (antineutrino)				
interaction with LVD				

Monitoring of radon concentrations is possible owing to the detection of gammas from decays of daughter nuclei of the radon isotope ²²²Rn.

The main goal of the experiment is detection of neutrinos from the gravitation collapse of stellar cores due to IBD reaction ($\tilde{v}_e + p \rightarrow e^+ + n$).

LVD has been observing our Galaxy searching for neutrino bursts since 9 June 1992. The detector is one of the founding members of the SuperNovae Early Warning System project.

Also LVD be able to register natural radioactivity products, and in particular, from radon decay.

Intensity variations of the total muon flux

Muon

250 NS

LVD collaboration: N.Yu.Agafonova¹ , M.Aglietta^{2,3} , P.Antonioli⁴ , V.V. Ashikhmin¹ , G.Bari⁴ G.Bruno^{5,6}, E.A. Dobrynina¹, R.I. Enikeev¹, W.Fulgione^{3,7}, M.Garbini^{4,8}, P.L.Ghia⁹, P.Giusti⁴, E.Kemp¹⁰, A.Molinario^{2,3}, R.Persiani⁴, I.A.Pless¹¹, G.Sartorelli⁴, I.R.Shakiryanova¹, M. Selvi⁴, G.C.Trinchero^{2,3}, C.F.Vigorito², V.F.Yakushev¹

¹Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia

²University of Torino and INFN-Torino, Italy

³INAF, Osservatorio Astrofisico di Torino, Italy

⁴University of Bologna and INFN-Bologna, Italy

⁵INFN, Laboratori Nazionali del Gran Sasso, Assergi, L'Aquila, Italy

⁶New York University Abu Dhabi, NYUAD, United Arab Emirates

⁷INFN, Laboratori Nazionali del Gran Sasso, Assergi, L'Aquila, Italy

⁸Centro Enrico Fermi, 00184 Roma, Italy

⁹Institut de Physique Nucleaire, CNRS, 91406 Orsay, France

¹⁰University of Campinas, Campinas, Brazil

¹¹Massachusetts Institute of Technology, Cambridge, USA

The 7th International Conference on Particle Physics and Astrophysics (ICPPA-2024), 22-25 October 2024, MEPhI, Russia